Diagnosing acute acid-base disorders
Authors:
František Duška; Petr Waldauf
Authors‘ workplace:
Klinika anesteziologie a resuscitace 3. LF UK a FN Královské Vinohrady, Praha
Published in:
Vnitř Lék 2019; 65(6): 400-404
Category:
Review
Overview
Traditional diagnostic approach to acute acid-base disorders is based on the assessment of bicarbonate buffer system, in which pH is determined by the ratio of [HCO3-] to pCO2. This, in turn, creates basis for distinguishing metabolic and respiratory disorders, and defines the term “compensation”. The use of electroneutrality advantageously complements the bicarbonate-based approach when dealing with complex acid-base disorders. It is possible to simplify this approach so it can be applied only using mental arithmetics. In principle, the space created by strong ion difference (which can be simplified to [Na+]-[Cl-]) is shared by negative charges on albumin and bicarbonate. In turn, a shrinkage of this space ([Na+]-[Cl-] < 32 mM) causes acidosis and an increase of [Na+]-[Cl-] > 36 mM causes alkalosis, as well as a decrease in albumin concentration (for every 10 g/L of albumin, 3 mM is freed to be occupied by [HCO3-]). Lastly, if the sum of negative charges on albumin and [HCO3-] is lower than estimated strong ion difference, an unmeasured anion must be present. This concept is explained on commented case reports.
Keywords:
acid base equilibrium – electroneutrality
Sources
- Astrup P. Diagnosis of acid-base imbalance. I. Definitions, theory, calculation and analytic methods and normal values. Ugeskr Laeger 1954; 116(20): 758–765.
- Severinghaus JW, Astrup PB. History of blood gas analysis. I. The development of electrochemistry. J Clin Monit 1985; 1(3): 180–192.
- Stewart PA. Independent and dependent variables of acid-base control. Respir Physiol 1978; 33(1): 9–26.
- Fencl V, Jabor A, Kazda A et al. Diagnosis of metabolic acid-base disturbances in critically ill patients. Am J Respir Crit Care Med 2000; 162(6): 2246–2251. Dostupné z DOI: <http://dx.doi.org/10.1164/ajrccm.162.6.9904099>.
- Figge J, Rossing TH, Fencl V. The role of serum proteins in acid-base equilibria. J Lab Clin Med 1991; 117(6): 453–467.
- Gilfix BM, Bique M, Magder S. A physical chemical approach to the analysis of acid-base balance in the clinical setting. J Crit Care 1993; 8(4): 187–197.
- Story DA, Morimatsu H, Bellomo R. Strong ions, weak acids and base excess: a simplified Fencl-Stewart approach to clinical acid-base disorders. Br J Anaesth 2004; 92(1): 54–60. Dostupné z DOI: <http://dx.doi.org/10.1093/bja/aeh018>.
- Story DA. Stewart Acid-Base. Anesth Analg 2016; 123(2): 511–515. Dostupné z DOI: <http://dx.doi.org/10.1213/ANE.0000000000001261>.
- Schwartz WB, Relman AS. A Critique of the Parameters Used in the Evaluation of Acid-Base Disorders. N Engl J Med 1963; 268: 1382–1388. Dostupné z DOI: <http://dx.doi.org/10.1056/NEJM196306202682503>.
- Boyle M, Lawrence J. An easy method of mentally estimating the metabolic component of acid/base balance using the Fencl-Stewart approach. Anaesth Intensive Care 2003; 31(5): 538–547. Dostupné z DOI: <http://dx.doi.org/10.1177/0310057X0303100508>.
- Mallat J, Barrailler S, Lemyze M et al. Use of Sodium-Chloride Difference and Corrected Anion Gap as Surrogates of Stewart Variables in Critically Ill Patients. PLoS ONE 2013; 8(2): e56635. Dostupné z DOI: <http://dx.doi.org/10.1371/journal.pone.0056635>.
- Hatherill M, Waggie Z, Purves L et al. Correction of the anion gap for albumin in order to detect occult tissue anions in shock. Arch Dis Child 2002; 87(6): 526–529. Dostupné z DOI: <http://dx.doi.org/10.1136/adc.87.6.526>.
- Zampieri FG, Park M, Ranzani OT et al. Anion gap corrected for albumin, phosphate and lactate is a good predictor of strong ion gap in critically ill patients: a nested cohort study. Rev Bras Ter Intensiva 2013; 25(3): 205–211. Dostupné z DOI: <http://dx.doi.org/10.5935/0103–507X.20130036>.
- Dubin A, Menises MM, Masevicius FD et al. Comparison of three different methods of evaluation of metabolic acid-base disorders. Crit Care Med 2007; 35(5): 1264–1270. Dostupné z DOI: <http://dx.doi.org/10.1097/01.CCM.0000259536.11943.90>.
- Morgan T, Venkatesh B, Hall J. Crystalloid strong ion difference determines metabolic acid-base change during acute normovolaemic haemodilution. Intensive Care Med 2004; 30(7): 1432–1437. Dostupné z DOI: <http://dx.doi.org/10.1007/s00134–004–2176-x>.
- Morgan TJ, Venkatesh B. Designing “balanced” crystalloids. Crit Care Resusc 2003; 5(4): 284–291.
Labels
Diabetology Endocrinology Internal medicineArticle was published in
Internal Medicine
2019 Issue 6
Most read in this issue
- Diagnosing acute acid-base disorders
- Delirium in the intensive care unit
- Extracorporeal removal techniques in toxicology: part 1
- Oncologic emergencies