Utility of Pneumonia Severity Index in hospitalized patients with pneumonia in intensive respiratory care units
Authors:
Beáta Hutyrová 1; Petr Jakubec 1; Zdena Šindelářová 1; Jana Šubová 1; Kateřina Langová 2; Vítězslav Kolek 1
Authors‘ workplace:
Klinika plicních nemocí a tuberkulózy LF UP a FN Olomouc, přednosta prof. MUDr. Vítězslav Kolek, DrSc.
1; Ústav lékařské biofyziky LF UP Olomouc, přednostka prof. RNDr. Hana Kolářová, CSc.
2
Published in:
Vnitř Lék 2015; 61(1): 15-23
Category:
Original Contributions
Overview
Introduction:
The aim of this study was to evaluate the prognostic value of Pneumonia Severity Index (PSI) for prediction of 30-day mortality in patients admitted to intensive care unit (ICU) for community-acquired pneumonia (CAP). In patients with CAP, comorbidities, complications, and physical, laboratory, radiological and microbiological findings were evaluated relative to their prognosis.
Patient and methods:
In the study, 197 patients with CAP, hospitalised at ICU of Department of Respiratory Medicine, University Hospital Olomouc between 2008 and 2012, were enrolled. Risk factors according to PSI were assessed in all patients.
Results:
In the studied cohort of patients with CAP, mean values of PSI were 115.4 ± SD 30.4 points. Overall, 29 patients (14.7 %) deceased. When comparing deceased and survived patients, statistically significant differences were found in PSI (mean ± SD: 137.4 ± 26.1 vs 111.7 ± 29.6 points, p < 0.0001), age (mean ± SD: 76.3 ± 12.9 vs 65.5 ± 14.7 years, p < 0.0001), incidence of heart diseases (86.2 % vs 67.3 %, p = 0.04) and ischaemic heart disease (58.6 % vs 38.7 %, p = 0.04). Assessment of physical and laboratory findings showed that deceased patients had significantly increased incidence of tachycardia above 90/min (51.7 % vs 27.4 %, p = 0.01), tachypnoe above 30/min (37.9 % vs 13.7 %, p = 0.001) and acidosis with pH < 7.35 (27.6 % vs 8.9 %, p = 0.004) comparing to survived patients. No significant correlation between PSI and the length of hospitalisation in survived patients was observed. In patients with Staphylococcus sp. and Klebsiella pneumoniae infection, longer hospitalisation period was observed. Comparison of other parameters such as comorbidities, physical and laboratory findings, and pathogens showed no significant differences when comparing deceased to survived patients.
Conclusion:
Our study showed that PSI represents an important predictor of 30-day mortality in patients with CAP at ICU, but does not correlate neither with the length of hospitalisation nor with particular pathogens. Independent negative prognostic factors in CAP were age, incidence of heart diseases (most importantly ischaemic heart disease), tachycardia, tachypnoe and acidosis. Staphylococcus sp. and Klebsiella pneumoniae infection led to longer hospitalisation period. All these factors point out the need for increased care in CAP patients.
Key words:
pneumonia – pneumonia severity index – severity scoring system
Sources
1. Kolek V. Prognóza nemocných s komunitní pneumonií. Poučení z klinických doporučení, skórovacích systémů a dalších parametrů. Postgraduální medicína 2013; 15(8): 51–56.
2. Kolek V, Kolář M, Kašák V et al. Diagnostika a léčba komunitní pneumonie dospělých. In: Kolek V et al. Doporučené postupy v pneumologii. Maxdorf: Praha 2013: 107–123. ISBN 978–80–7345–359–6.
3. Beneš J, Džupová O, Blechová Z et al. Skórovací systémy hodnotící prognózu komunitních pneumonií. Vnitř Lék 2012; 58(5): 357–364.
4. Jakubec P. Těžká komunitní pneumonie – uptodate 2013. Postgraduální medicína 2014; 16(2): 181–190.
5. Jakubec P, Kolek V, Kolář M. Diagnostika a léčba těžké pneumonie. In: Kolek V et al. Doporučené postupy v pneumologii. Maxdorf: Praha 2013: 124–140. ISBN 978–80–7345–359–6.
6. Fine MJ, Auble TE, Yealy DM et al. A prediction rule to identify lowrisk patients with community acquired pneumonia. N Engl J Med 1997; 336(4): 243–250.
7. Chalmers JD, Rutherford J. Can we use severity assessment tools to increase outpatient management of community-acquired pneumonia? Eur J Int Med 2012; 23(5): 398–406.
8. Renaud B, Coma E, Hayon J et al. PNEUMOCOM study investigators: Investigation of the ability of the Pneumonia Severity Index to accurately predict clinically relevant outcomes: a European study. Clin Microbiol Infect 2007; 13(9): 923–931.
9. Angus DC, Marrie TJ, Obrosky DS et al. Severe community-acquired pneumonia: use of intensive care services and evaluation of American and British Thoracic Society Diagnostic criteria. Am J Respir Crit Care Med 2002; 166(5): 717–723.
10. Choudhury G, Chalmers JD, Mandal P et al. Physician judgement is a crucial adjunct to pneumonia severity scores in low-risk patients. Eur Respir J 2011; 38(3): 643–648.
11. Bhadade RR, de Souza RA, Harde MJ et al. Clinical characteristics and outcomes of patients with acute lung injury and ARDS. J Postgrad Med 2011; 57(4): 286–290.
12. Calle A, Márquez MA, Arellano M et al. Geriatric Assessment and Prognostic Factors of Mortality in Very Elderly Patients With Community-Acquired Pneumonia. Arch Bronconeumol 2014; 50(10):429–434.
13. Planquette B, Le Pimpec-Barthes F, Trinquart L et al. Early respiratory acidosis is a new risk factor for pneumonia after lung resection. Interact Cardiovasc Thorac Surg 2012; 14(3): 244–248.
14. Aliberti S, Amir A, Peyrani P et al. Incidence, etiology, timing, and risk factors for clinical failure in hospitalized patients with community-acquired pneumonia. Chest 2008; 134(5): 955–962.
15. Sibila O, Meduri GU, Mortensen EM et al. Improving the 2007 Infectious Disease Society of America/American Thoracic Society severe community-acquired pneumonia criteria to predict intensive care unit admission. J Crit Care 2013; 28(3): 284–290.
16. Corrales-Medina VF, Musher DM, Shachkina S et al. Acute pneumonia and the cardiovascular system. Lancet 2013; 381(9865): 496–505.
17. Curley G, Contreras MM, Nichol AD et al. Hypercapnia and acidosis in sepsis: a double-edged sword? Anesthesiology 2010; 112(2): 462–472.
18. Mor A, Thomsen RW, Ulrichsen SP et al. Chronic heart failure and risk of hospitalization with pneumonia: a population-based study. Eur J Intern Med 2013; 24(4): 349–353.
19. Corrales-Medina VF, Musher DM, Wells GA et al. Cardiac complications in patients with community-acquired pneumonia: incidence, timing, risk factors, and association with short-term mortality. Circulation 2012; 125(6): 773–781.
20. Khand AU, Gemmell I, Rankin AC et al. Clinical events leading to the progression of heart failure: insights from a national database of hospital discharges. Eur Heart J 2001; 22(2): 153–164.
21. Corrales-Medina VF, Madjid M, Musher DM. Role of acute infection in triggering acute coronary syndromes. Lancet Infect Dis 2010; 10(2): 83–92.
22. Corrales-Medina VF, Suh KN, Rose G et al. Cardiac complications in patients with community-acquired pneumonia: a systematic review and meta-analysis of observational studies. PLoS Med 2011; 8(6): e1001048. Dostupné z DOI: <http://doi.org/10.1371/journal.pmed.1001048>.
23. Corrales-Medina VF, Taljaard M, Fine MJ et al. Risk stratification for cardiac complications in patients hospitalized for community-acquired pneumonia. Mayo Clin Proc 2014; 89(1): 60–68.
24. Lippi G, Meschi T, Cervellin G. Inflammatory biomarkers for the diagnosis, monitoring and follow-up of community-acquired pneumonia: clinical evidence and perspectives. Eur J Intern Med 2011; 22(5): 460–465.
25. Chang CL, Mills GD, Karalus NC et al. Biomarkers of Cardiac Dysfunction and Mortality from Community-Acquired Pneumonia in Adults. PLoS One 2013; 8(5): e62612. Dostupné z WWW: <http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0062612>.
26. Cillóniz C, Ewig S, Polverino E et al. Microbial aetiology of community-acquired pneumonia and its relation to severity. Thorax 2011; 66(4): 340–346.
27. Lee YT, Chen SC, Chan KC et al. Impact of infectious etiology on the outcome of Taiwanese patients hospitalized with community acquired pneumonia. J Infect Dev Ctries 2013; 7(2): 116–124.
Labels
Diabetology Endocrinology Internal medicineArticle was published in
Internal Medicine
2015 Issue 1
Most read in this issue
- Therapeutic monitoring of amikacin and gentamicin in routine clinical practice
- Association between asymptomatic hyperuricaemia and metabolic syndrome in the adolescents
- Tachycardia-induced cardiomyopathy
- The role of the assessment of heavy/light chain pairs of immunoglobulin in monoclonal gammopathies