#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Genetics of dyslipidemia – yesterday, today, and tomorrow


Authors: J. A. Hubáček 1;  M. Vráblík 2
Authors‘ workplace: Pracoviště experimentální medicíny, Laboratoř molekulární genetiky IKEM Praha, vedoucí doc. MUDr. Luděk Červenka, CSc. 1;  III. interní klinika 1. lékařské fakulty UK a VFN Praha, přednosta prof. MUDr. Štěpán Svačina, DrSc., MBA 2
Published in: Vnitř Lék 2007; 53(4): 371-376
Category: Reviews

Overview

The great majority of plasmatic lipid and lipoprotein metabolism disorders are genetically determined diseases (primary dyslipidemias). Only a minority of prevailingly severe dyslipidemias is monogenic, and a greater part of them is inherited as a polygenic trait. Analyses of the genetic background of dyslipidemia are made difficult by the complexity of lipoprotein metabolism and also by gene-gene, gene-gender and gene-environment interactions. Association studies, animal models, whole genome scans and gene expression analyses are used in the study of the genetic background of primary dyslipidemias. There are several genetically well characterized dyslipidemias (e.g. familiar hypercholesterolemia, sitosterolemia), but in most of the disorders the exact genetic cause remains unknown. The knowledge of the gene variants responsible for a particular phenotype will be essential for correct diagnosing and treatment, as well as for further development of gene therapy which brings hope for patients with severe homozygous forms of monogenic dyslipidemias.

Key words:
dyslipidemia – polymorphism – mutation – gene therapy – cardiovascular disease


Sources

1. Freiberger T, Vrablík M. Genetika hyperlipoproteinémií. Familiární hypercholesterolémie. Postgraduální medicína 2007; 9: 907-911.

2. Vrablík M, Češka R, Hořínek A. Major apolipoprotein B-100 mutations in lipoprotein metabolism and atherosclerosis. Physiol Res 2001; 50: 337-343.

3. Hubáček JA, Bobková D. Molekulární genetika, lipidy a ateroskleróza. In: Česka R et al. Cholesterol a ateroskleróza, léčba dyslipidémií. Praha: Triton 2005: 75-92.

4. Hirschhorn JN. Genetic approaches to studying common diseases and complex traits. Pediatr Res 2005; 57: 74R-77R.

5. Talmud PJ. How to identify gene-environment interactions in a multifactorial disease: CHD as an example. Proc Nutr Soc 2004; 63: 5-10.

6. Berg K. Gene-enviromental interaction: variability gene concept. In: Goldbourt U, de Faire U, Berg K (eds.): Genetic factors in Coronary Heart Disease. Kluwer Academic Publishers: 1994: 373-383.

7. Talmud PJ, Humphries SE. Gene: environment interactions and coronary heart disease risk. World Rev Nutr Diet 2004; 93: 29-40.

8. Rader DJ. Gene therapy for familial hypercholesterolemia. Nutr Metab Cardiovasc Dis 2001; 11 (Suppl 5): 40-44.

9. Topol EJ, Smith J, Plow EF et al. Genetic susceptibility to myocardial infarction and coronary artery disease. Hum Mol Genet 2006; 15: R117-R123.

10. Bobkova D, Honsova E, Kovar J et al. Effect of diets on lipoprotein concentrations in heterozygous apolipoprotein E-deficient mice. Physiol Res 2004; 53: 635-643.

11. Vogel SN, Perera PY, Detore GR et al. CD14 dependent and independent signaling pathways in murine macrophages from normal and CD14 “knockout” (CD14KO) mice stimulated with LPS or taxol. Prog Clin Biol Res 1998; 397: 137-146.

12. Tuomisto TT, Binder BR, Yla-Herttuala S. Genetics, genomics and proteomics in atherosclerosis research. Ann Med 2005; 37: 323-332.

Labels
Diabetology Endocrinology Internal medicine

Article was published in

Internal Medicine

Issue 4

2007 Issue 4

Most read in this issue
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#