#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Intrauterine Growth Retardation and Its Influence on Further Development of Extremely Immature Newborns


Authors: M. Fedorová 1;  B. Zlatohlávková 1;  J. Kytnarová 2;  G. Malošková 1;  M. Kršek 3;  R. Plavka 1
Authors‘ workplace: Gynekologicko-porodnická klinika VFN a UK 1. LF, Praha přednosta prof. MUDr. A. Martan, DrSc. 1;  Klinika dětského a dorostového lékařství VFN a UK 1. LF, Praha přednosta prof. MUDr. J. Zeman, DrSc. 2;  III. interní klinika VFN a UK 1. LF, Praha přednosta prof. MUDr. Š. Svačina, DrSc., MBA 3
Published in: Čes-slov Pediat 2009; 64 (7-8): 359-364.
Category: Review

Overview

Severe immaturity and intrauterine growth retardation pose risk factors not only for inadequate postnatal adaptation but also for many diseases developed in adulthood. Chronic stress throughout the intrauterine growth leads to the development of many metabolic, endocrine and hemodynamic changes and concurrently accelerates maturation of several organ systems. These changes might represent short term advantage for prematurely born infant giving him higher probability of survival in immediate postnatal period.

In the later development, however, these pathologically programmed metabolic and endocrine derangements may cause or worsen the development of many diseases primarily induced by immaturity (respiratory distress syndrome, bronchopulmonary dysplasia, necrotizing enterocolitis, intraventricular hemorrhage and retinopathy of prematurity). Intrauterine metabolic changes may as well represent the basis for metabolic syndrome and cardiovascular morbidity later in the adult age. Insulin-like growth factors (IGF-I, IGF-II and their binding proteins (IGFBPs)) appear to be suitable monitoring system of metabolic changes in the course of therapy of extremely low birth weight infants.

Key words:
extremely low birth weight infant, intrauterine growth retardation (IUGR), insulin-like growth factors IGF-I and IGF-II, insulin-like growth factors binding proteins (IGFBPs)


Sources

1. Plavka R. Aktualizace výsledků novorozenecké mortality a morbidity v ČR v roce 2007. [Cit. 2008- 11-27]. Dostupné z: <http://vfn.lf1.cuni.cz/gp/neonat/files/plavka7_soubory/frame.htm>.

2. Regev R, Teichman B. Prematurity and intrauterine growth retardation – double jeopardy? Clin. Perinatol. 2003;3: 453–473.

3. World Health Organization. The incidence of low birth weight: an update. Weekly Epidemiol. Rec. 1984;59: 205–211.

4. Chatelain P. Children born with intrauterine growth retardation (IUGR) or small for gestational age (SGA): Long term growth and metabolit consequences. Endocrine Regulations 2000;33: 33–36.

5. Lee PA, Chernausek D, Hokken-Koelega ACS, Chernichow P. International Small for Gestational Age Advisory Board Consensus Development Conference Statement: Management of Short Children Born Small for Gestational Age, April 24–October 1, 2001. Pediatrics 2003;111:1253–1261.

6. Leger J, Noel M, Limal JM, Czernichow P. Growth factors and intrauterine growth retardation. II. Serum growth hormone, insulin-like growth factor (IGF) I, and IGF-binding protein 3 levels in children with intrauterine growth retardation compared with normal kontrol subjects: prospective study from birth to two years of age. Study Group of IUGR. Pediatr. Res. 1996;40: 101–107.

7. Boyne MS, Thame M, Bennett FI, Osmond C, Miell JP, Forrester TE. The relationship among circulating insulin-like growth factor (IGF)-I, IGF-binding proteins-1 and -2, and birth anthropometry: a prospective study. J. Clin. Endocrinol. Metab. 2003;88:1687–1691.

8. Ozkan H, Aydin A, Demir N, Erci T, Buyukgebiz A. Association of IGF-I, IGFBP-1 and IGFBP-3 on intrauterine growth and early catch-up growth. Biol. Neonate 1999;76: 274–282.

9. Cianfarani S, Germani D, Branca F. Low birth weight and adult insulin resistence: „the catch-up growth“ hypothesis. Arch. Dis. Child. 1999;81: F71–F73.

10. Cutfield WS, Regan FA, Jackson WE, Jefferies CA, Robinson EM, Harris M, Hofman PL. The endocrine consequences for very low birth weight premature infants. Growth Horm. IGF Res. 2004;14 Suppl. A: S130–135.

11. Woods KJ, Van Helvoirt M, Ong KKL, Mohn A, Levy J, De Zegher F, Dunger DB. The somatotropin axis in shor children born small for gestational age: Relation to insuline resistence. Pediatr. Res. 2002;51: 76–80.

12. Hunt KJ, Lukanova A, Rinald S, Lundin E, Norat T, Palmqvist R, Stattin P, Riboli E, Hallmans G, Kaaks R. A potential inverse association between insulin-like growth factor I and hypertension in a gross-sectional study. Ann. Epidemiol. 2006;16: 563–571.

13. Kumar VH, Ryan RM. Growth factors in the fetal and neonate lung. Front. Biosci. 2004;9: 464–480.

14. Chetty A, Nielsen HC. Regulation of cell proliferation by insulin-like growth factor 1 in hyperoxia-exposed neonatal rat lung. Mol. Genet. Metab. 2002 Mar;75: 265–275.

15. Harding R, Cock ML, Maritz GS. The developmental environment: effects on lung structure and function. In Gluckman P, Hanson M (eds). Developmental Origins of Health and Disease. Cambridge University Press, 2006: 336–348.

16. Jugovin D, Timbru J, Medić M, Jukić KM, Kurjak A, Arbeille P, Salihagić-Kadić A. New Doppler index for prediction of perinatal brain damage in growth-restricted and hypoxic fetuses. Ultrasound Obstet. Gynecol. 2007;30: 303–311.

17. Löfqvist C, Engström E, Sigurdsson J, Hård AL, Niklasson A, Ewald U, Holmström G, Smith LEH, Hellström A. Postnatal head growth deficit among premature infants parallels retinopathy of prematurity and insulin-like growth factor-I deficit. Pediatrics 2006;117: 1930–1938.

18. Cooke RWI. Are there critical periods for brain growth in children born preterm? Arch. Dis. Child. Fetal Neonatal Ed. 2006;91(1): 17-20.

19. Berger A. Insulin-like growth factor and cognitive function. Brit. Med. J. 2001;322: 203.

20. Gunnell D, Miller LL, Rogers I, Holly JMP and the ALSPAC Study Team. Association of insuline-like growth factor I and insuline-like growth factor-binding protein-3 with intelligence quotient among 8- to 9-year-old children in the Avon longitudinal study of parents and children. Pediatrics 2005;116: 681–686.

21. Manogura A, Turan O, Kush M, Berg C, Bhide A, Turan S, Moyano D, Bower S, Nicolaides K, Galan H. Predictors of necrotizing enterocolitis in preterm growth-restricted neonates. Am. J. Obstet. Gynecol. 2008;198: 638.e1–5.

22. Hellström A, Engström E, Hård AL, Albertsson-Wikland K, Carlsson B, Niklasson A, Löfqvist C, Svensson E, Holm S, Ewald U, Holmström G, Smith LE. Postnatal serum insulin-like growth factor I deficienty is associated with retinopathy of prematurity and other complications of premature birth. Pediatrics 2003;112: 1016–1020.

23. Rosenberg A. The IUGR newborn. Semin. Perinatol. 2008;32: 219–224.

24. Floyd BN, Leske DA, Wren SM, Mookadam M, Fautch MP, Holmes JM. Differences between rat stains model of retinopathy of prematurity. Mol. Vis. 2005;11: 524–530.

25. Zlatohlávková B, Kytnarová J, Fedorová M, Kuběna A, Plavka R, Zeman J. Růst extrémně nezralých dětí ve 2 a 5 letech: Porovnání dětí narozených ve 22.–25. a 26.–27. gestačním týdnu. Čes.--slov. Pediat. 2008;7–8: 387–388.

26. Farooqi A, Hägglöf B, Sedin G, Gothefors L, Serenius F. Growth in 10- to 12-year-old children born at 23 to 25 weeks‘ gestation in the 1990s: A Sweedish National Prospective Follow-up Study. Pediatrics 2006;118(5): e1452–1465.

27. Geoffrey WF, Doyle LW, Davis NM, Callanan C. Very low birth weight and growth into adolescence. Arch. Pediatr. Adolesc. Med. 2000;154: 778–784.

28. Wood NS, Costeloe K, Gibbon AT, Hennessy EM, Marlow N, Wilkinson AR. The EPICure study: growth and associated probléme in children born at 25 weeks of gestational age or less. Arch. Dis. Child. Fetal Neonatal Ed. 2003;88(6): 492–500.

29. Qiu XS, Huang TT, Deng HY, Shen ZY, Ke ZY, Mei KY, Lai F. Effects of early nutrition intervention on IGF1, IGFBP3, intestinal development, and catch-up growth of intrauterine growth retardation rats. Chin. Med. Sci. J. 2004;19: 189–192.

30. Morley R, Lucas A. Randomize diet in the neonatal period and growth performance until 7,5-8 y of age in preterm children. Am. J. Clin. Nutr. 2000;71: 822–828.

31. Lucas A., Morley R., Cole TJ. Randomized trial of early diet in preterm bebies and later inteligence quotient. BMJ 1998; 317: 1481–1487.

32. Vohr BR, Poindexter BB, Dusick AM, McKinley LT, Wright LL, Langer JC, Poole WK, NICHD Neonatal Research Network. Beneficial effects of breast milk in the neonatal intensive care unit on the developmental outcome of extremely low birth weight infants at 18 months of age. Pediatrics 2006;118: e115–123.

33. Singhal A., Lucas A. Early origins of cardiovascular disease: is there a unifying hypothesis? Lancet 2004;363: 1642–1645.

34. Singhal A, Cole TJ, Fewtrell M, Lucas A. Breastmilk feeding and lipoprotein profile in adolescents born preterm: follow-up of a prospective randomised study. Lancet 2004;363: 1571–1578.

35. Singhal A, Fewtrell M, Cole TJ, Lucas A. Low nutrient intake and early growth for later insulin resistance in adolescents born preterm. Lancet 2003;361: 1089–1097.

36. Hemachandra AH, Howards PP, Furth SL, Klebanoff MA. Birth weight, postnatal growth, and risk for high blood pressure at 7 years of age: results from the Collaborative Perinatal Project. Pediatrics 2007;119: e1264–1270.

37. Lineham JD, Smith RM, Dahlenburg GW, King RA, Haslam RR, Start MC, Faull L. Circulating insulin-like growth factor I levels in newborn premature and full-term infants followed longitudinally. Early Hum. Dev. 1986;13: 37–46.

38. Smith WJ, Underwood LE, Keyes L, Clemmons DR. Use of insulin-like growth factor-I (IGF-I) and IGF-binding protein measurements to monitor feeding of premature infants. J. Clin. Endocrinol. Metab. 1997;82: 3982–3988.

Labels
Neonatology Paediatrics General practitioner for children and adolescents
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#