Traditional and contemporary views on the functional morphology of the fallopian tubes and their importance for gynecological practice
Authors:
N. Hamranová 1,2; N. Hocinec 3; Jozef Záhumenský 4; M. Csöbönyeiová 1; M. Klein 1; C. Feitscherová 1; I. Varga 1
Authors‘ workplace:
Ústav histológie a embryológie, LF UK v Bratislave, Slovenská republika
1; Gynekologicko-pôrodnícka klinika FN Trenčín, Slovenská republika
2; Gynekologicko-pôrodnícke oddelenie, Nemocnica AGEL, Komárno, Slovenská republika
3; II. gynekologicko-pôrodnícka klinika LF UK a UN Bratislava, Slovenská republika
4
Published in:
Ceska Gynekol 2023; 88(1): 33-43
Category:
Review Article
doi:
https://doi.org/10.48095/cccg202333
Overview
The uterine tube, belonging to the female internal reproductive organs, is the only tubular organ in the human body that has, under physiological conditions, a transport function occurring in two opposite directions. It transports the picked-up oocyte released during ovulation and early embryo towards the uterine cavity. At the same time, it can transport spermatozoa towards the abdominal opening of the fallopian tube. Moreover, the uterine tube has many other vital functions as sperm selection (one of the crucial factors preventing polyspermy) and the production of tubal fluid. This unique secretion is essential not only for the process of fertilization but also for sperm activation and the nourishment of the early embryo during its transport into the uterine cavity. The first part of our review is focused on the historical introduction to the topic in which the reader will become familiar with the views and understanding of these peculiar organs by famous anatomists of the 16th and 17th centuries, namely Gabriele Falloppio and Renier de Graaf. The following section will cover the overview of the latest anatomical, embryological, and histological knowledge, which are also crucial for a better understanding of pathological processes affecting the fallopian tube, such as tubal infertility or tubal pregnancy. Interestingly, recent years have been very fruitful regarding uterine tube morphology, e. g. the discovery of an unique mechanism of lymphatic flow within the uterine tube mucosa, the first description of immunologically-active intraepithelial suppressor T-lymphocytes, or the observation of pacemaker cell population – telocytes – in the muscle layer.
Keywords:
fallopian tube – Anatomy – Embryology – history – histology – recent findings
Sources
1. Thiery M. Gabriele Fallopio (1523–1562) and the Fallopian tube. Gynecol Surg 2009; 6: 93–95. doi: 10.1007/s10397-008-0453-3.
2. Páč L. Slovník anatomických eponym. 2. do-plněné vydání. Praha: Galén 2010.
3. Mortazavi MM, Adeeb N, Latif B et al. Gabriele Fallopio (1523–1562) and his contributions to the development of medicine and anatomy. Childs Nerv Syst 2013; 29 (6): 877–880. doi: 10.1007/s00381-012-1921-7.
4. Wessel GM. Microscope not included. Reinier de Graaf (July 30, 1641 – August 17, 1673). Mol Reprod Dev 2014; 81 (3): Fmi. doi: 10.1002/mrd.22315.
5. Jay V. A portrait in history. The legacy of Reinier de Graaf. Arch Pathol Lab Med 2000; 124 (8): 1115–1116. doi: 10.5858/2000-124-1115-TLO RDG.
6. Miller DJ. Review: the epic journey of sperm through the female reproductive tract. Animal 2018; 12 (s1): s110–s120. doi: 10.1017/S175173 1118000526.
7. Li S, Winuthayanon W. Oviduct: roles in fertilization and early embryo development. J Endocrinol 2017; 232 (1): R1–R26. doi: 10.1530/ JOE-16-0302.
8. Gockley AA, Elias KM. Fallopian tube tumorigenesis and clinical implications for ovarian cancer risk-reduction. Cancer Treat Rev 2018; 69: 66–71. doi: 10.1016/j.ctrv.2018.06.004.
9. Hewer EE. Textbook of histology for medical students. 3rd ed. London: William Heinemann Medical Books Ltd 1945.
10. Varga I, Kachlík D, Žišková M et al. Lymphatic lacunae of the mucosal folds of human uterine tubes – a rediscovery of forgotten structures and their possible role in reproduction. Ann Anat 2018; 219: 121–128. doi: 10.1016/ j.aanat.2018.06.005.
11. Vakaliuk LM, Zeliak VL, Melman EP. The circulatory bed of the humanuterine tube. Arkh Anat Gistol Embriol 1988; 94 (2): 86–93.
12. Halbert SA, Tam PY, Blandau RJ. Egg transport in the rabbit oviduct: theroles of cilia and muscle. Science 1976; 191 (4231): 1052–1053. doi: 10.1126/science.1251215.
13. Kajanová M, Danihel L, Polák Š et al. Štruktúrny základ transportnej funkcie vajíčkovodu. Ceska Gynekol 2012; 77 (6): 566–571.
14. Atkins KA. Normal histology of the uterus and fallopian tubes. In: Mills SE (ed). Histology for pathologists. 5th edition. Philadelphia: Wolter Kluwer 2020: 1059–1106.
15. Eddy CA, Pauerstein CJ. Anatomy and physiology of the fallopian tube. Clin Obstet Gynecol 1980; 23 (4): 1177–1193. doi: 10.1097/00 003081-198012000-00023.
16. Schoenwolf GC, Bleyl SB, Brauer PR et al. Larsen’s Human Embryology. 6th edition. Philadelphia: Elsevier 2021.
17. Moore KL, Persaud TV, Torchia MG. The developing human. Clinically oriented embryology. 10th edition. Philadelphia: Elsevier 2016.
18. Varga I, Tonar Z. Klinicky orientovaná embryológia. In: Záhumenský J (ed). Pôrodníctvo. Bratislava: Solen 2022.
19. Cebesoy FB, Kutlar I, Dikensoy E et al. Morgagni hydatids: a new factor in infertility? Arch Gynecol Obstet 2010; 281 (6): 1015–1017. doi: 10.1007/s00404-009-1233-7.
20. Rasheed SM, Abdelmonem AM. Hydatid of Morgagni: a possible underestimated cause of unexplained infertility. Eur J Obstet Gynecol Reprod Biol 2011; 158 (1): 62–66. doi: 10.1016/j.ejogrb.2011.04.018.
21. Acién P, Acién MI. The history of female genital tract malformation classifications and proposal of an updated system. Hum Reprod Update 2011; 17 (5): 693–705. doi: 10.1093/humu pd/dmr021.
22. Sysak R, Bluska P, Stencl P et al. Agenesis of female internal reproductive organs, the Mayer-Rokitansky-Küster-Hauser syndrome. Bratisl Lek Listy 2021; 122 (12): 839–845. doi: 10.4149/BLL_2021_136.
23. Narang K, Cope ZS, Teixeira JM. Developmental genetics of the female reproductive tract. In: Leung PC, Qiao J (eds). Human reproductive and prenatal genetics. Philadelphia: Elsevier Academic Press 2019.
24. Boer L, Radziun AB, Oostra RJ. Frederik Ruysch (1638–1731): historical perspective and contemporary analysis of his teratological legacy. Am J Med Genet A 2017; 173 (1): 16–41. doi: 10.1002/ajmg.a.37663.
25. Mescher AL. Junqueira’s basic histology. Text and atlas. 13th edition. USA: McGraw-Hill Education 2013.
26. Varga I, Miko M, Kachlík D et al. How many cell types form the epithelial lining of the human uterine tubes? Revision of the histological nomenclature of the human tubal epithelium. Ann Anat 2019; 224: 73–80. doi: 10.1016/ j.aanat.2019.03.012.
27. Barberini F, Correr S, Makabe S. Microscopical survey of the development and differentiation of the epithelium of the uterine tube and uterus in the human fetus. Ital J Anat Embryol 2005; 110 (2 Suppl 1): 231–237.
28. FICAT (Federative International Committee on Anatomical Terminology). Terminologia histologica: international terms for human cytology and histology. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins 2008.
29. Urban L, Miko M, Kajanova M et al. Telocytes (interstitial Cajal-like cells) in human Fallopian tubes. Bratisl Lek Listy 2016; 117 (5): 263–267. doi: 10.4149/bll_2016_051.
30. Aleksandrovych V, Walocha JA, Gil K. Telocytes in female reproductive system (human and animal). J Cell Mol Med 2016; 20 (6): 994–1000. doi: 10.1111/jcmm.12843.
31. Božíková S, Urban L, Kajanová M et al. Funkčná morfológia novo objavených telocytov v ženskom pohlavnom systéme. Ceska Gynekol 2016; 81 (1): 31–37.
32. Popescu LM, Ciontea SM, Cretoiu D. Interstitial Cajal-like cells in human uterus and fallopian tube. Ann NY Acad Sci 2007; 1101: 139–165. doi: 10.1196/annals.1389.022.
33. Klein M, Lapides L, Fecmanova D et al. From TELOCYTES to TELOCYTOPATHIES. Do recently described interstitial cells play a role in female idiopathic infertility? Medicina (Kaunas) 2020; 56 (12): 688. doi: 10.3390/medicina56120688.
34. Varga I, Polák Š, Kyselovič J et al. Recently discovered interstitial cell population of telocytes: distinguishing facts from fiction regarding their role in the pathogenesis of diverse diseases called “Telocytopathies”. Medicina (Kaunas) 2019; 55 (2): 56. doi: 10.3390/medicina55020056.
35. Klein M, Lapides L, Fecmanova D et al. Novel cellular entities and their role in the etiopathogenesis of female idiopathic infertility – a review article. Clin Exp Obstet Gynecol 2021; 48 (3): 461–465. doi: 10.31083/j.ceog.2021.03. 2395.
36. Savelli L, Ghi T, De Iaco P et al. Paraovarian / / paratubal cysts: comparison of transvaginal sonographic and pathological findings to establish diagnostic criteria. Ultrasound Obstet Gynecol 2006; 28 (3): 330–334. doi: 10.1002/uog.2829.
37. Terek MC, Sahin C, Yeniel AO et al. Paratubal borderline tumor diagnosed in the adolescent period: a case report and review of the literature. J Pediatr Adolesc Gynecol 2011; 24 (5): e115–e116. doi: 10.1016/j.jpag.2011.05.007.
38. Hunt JL, Lynn AA. Histologic features of surgically removed fallopian tubes. Arch Pathol Lab Med 2002; 126 (8): 951–955. doi: 10.5858/2002-126-0951-HFOSRT.
39. Satir P. Mechanisms of ciliary movement: contributions from electron microscopy. Scanning Microsc 1992; 6 (2): 573–579.
40. Crow J, Amso NN, Lewin J et al. Morphology and ultrastructure of fallopian tube epithelium at different stages of the menstrual cycle and menopause. Hum Reprod 1994; 9 (12): 2224–2233. doi: 10.1093/oxfordjournals.humrep.a138 428.
41. Verhage HG, Bareither ML, Jaffe RC et al. Cyclic changes in ciliation, secretion and cell height of the oviductal epithelium in women. Am J Anat 1979; 156 (4): 505–521. doi: 10.1002/aja. 1001560405.
42. Cigánková V, Krajnicáková H, Kokardová M et al. Morphological changes in the ewe uterine tube (oviduct) epithelium during puerperium. Vet Med (Praha) 1996; 41 (11): 339–346.
43. Correr S, Makabe S, Heyn R et al. Microplicae-like structures of the fallopian tube in postmenopausal women as shown by electron microscopy. Histol Histopathol 2006; 21 (3): 219–226. doi: 10.14670/HH-21.219.
44. Li J, Chen X, Zhou J. Ultrastructural study on the epithelium of ligated fallopian tubes in women of reproductive age. Ann Anat 1996; 178 (4): 317–320. doi: 10.1016/S0940-96 02 (96) 80082-3.
45. Lowe JS, Anderson PG, Anderson SI. Stevens & Lowe‘s Human Histology. 5th edition. Edinburgh: Elsevier 2018.
46. Callahan MJ, Crum CP, Medeiros F et al. Primary fallopian tube malignancies in BRCA-positive women undergoing surgery for ovarian cancer risk reduction. J Clin Oncol 2007; 25 (25): 3985–3990. doi: 10.1200/JCO.2007.12.2622.
47. Gilks CB, Irving J, Köbel M et al. Incidental nonuterine high-grade serous carcinomas arise in the fallopian tube in most cases: further evidence for the tubal origin of high-grade serous carcinomas. Am J Surg Pathol 2015; 39 (3): 357–364. doi: 10.1097/PAS.0000000000000353.
48. Falconer H, Yin L, Grönberg H et al. Ovarian cancer risk after salpingectomy: a nationwide population-based study. J Natl Cancer Inst 2015; 107 (2): dju410. doi: 10.1093/jnci/dju410.
49. Eleje GU, Eke AC, Ezebialu IU et al. Risk-reducing bilateral salpingo-oophorectomy in women with BRCA1 or BRCA2 mutations. Cochrane Database Syst Rev 2018; 8 (8): CD012464. doi: 10.1002/14651858.CD012464.pub2.
Labels
Paediatric gynaecology Gynaecology and obstetrics Reproduction medicineArticle was published in
Czech Gynaecology
2023 Issue 1
Most read in this issue
- Cryopreservation of ovarian tissue as a method for fertility preservation in women
- Preterm premature rupture of membranes
- The fertility sparing therapy in ectopic pregnancy
- Traditional and contemporary views on the functional morphology of the fallopian tubes and their importance for gynecological practice