Capillary zone electrophoresis in combination with UV detection for simultaneous determination of tramadol and paracetamol in pharmaceutical and biological samples
Authors:
Andrea Horniaková; Ondrej Štefánik; Ivana Čižmárová; Michaela Matušková; Peter Mikuš; Juraj Piešťanský
Published in:
Čes. slov. Farm., 2022; 71, 67-77
Category:
Original Article
doi:
https://doi.org/https://doi.org/10.5817/CSF2022-2-65
Overview
The aim of the present study is the development and validation of a simple method based on capillary zone electrophoresis coupled with UV detection for simultaneous determination of tramadol and paracetamol in pharmaceutical and biological samples. The background electrolyte was composed of 50 mM ammonium carbonate, which is a type of a non-conventional electrolyte system. The developed method was characterized by suitable validation parameters, such as linearity (coefficient of determination r2 ≥ 0,995), selectivity or the limit of detection at the level of 0.25 – 0.5 μg/ml. Acceptable values of accuracy and precision were obtained, which were in good agreement with the recommended validation guidelines for analysis of pharmaceutical and biological samples. Detection was performed at a wavelength of 200 nm. The developed method was successfully applied to determine tramadol and paracetamol in various dosage forms and in urine biological samples. Achieved results indicate a potential of the method to be integrated in the common quality control processes of drugs and/or in bioanalysis.
Keywords:
quality control – capillary zone electrophoresis – UV detection – tramadol – paracetamol – bioanalysis
Sources
1. Ritter J. M., Flower R. J., Henderson G., Loke Y. K., MacEwan D., Rang H. P. Rang and Dale’s Pharmacology E-Book. Philadelphia, UNITED KINGDOM: Elsevier 2018.
2. Brook P., Pickering T., Connell J. Oxford Handbook of Pain Management. Oxford: Oxford University Press USA – OSO 2011.
3. Sarkany A., Hancu G., Drăguț C., Modroiu A., Barabás-Hajdu E. Capillary Electrophoresis Methods for the Determination of Tramadol: A Review. Pharm. Sci. 2019b; 25, 278–286.
4. Sarkany A., Hancu G., Cârje A., Drăguț C., Papp L. A. Chiral separation of tramadol enantiomers by capillary electrophoresis using cyclodextrins as chiral selectors and experimental design method optimization. Chem. Pap. 2019a; 73, 2363–2370.
5. Subedi M., Bajaj S., Kumar M. S., Yc M. An overview of tramadol and its usage in pain management and future perspective. Biomed. Pharmacother. 2019; 111, 443–451.
6. Freo U., Ruocco C., Valerio A., Scagnol I., Nisoli E. Paracetamol: A Review of Guideline Recommendations. J. Clin. Med. 2021; 10, 3420.
7. https://www.adc.sk/databazy/produkty/detail/paralen- 500-620569.html
8. Lecoeur M., Rabenirina G., Schifano N., Odou P., Ethgen S., Lebuffe G., et al. Determination of acetaminophen and its main metabolites in urine by capillary electrophoresis hyphenated to mass spectrometry. Talanta 2019; 205.
9. Montaseri H., Forbes P. B. C. Analytical techniques for the determination of acetaminophen: A review. TrAC – Trends Analyt. Chem. 2018; 108, 122–134.
10. Abdelshakour M. A., Abdel Salam R. A., Hadad G. M., Abo-ElMatty D. M., Abdel Hameed E. A. HPLC-UV and UPLC- MS/MS methods for the simultaneous analysis of sildenafil, vardenafil, and tadalafil and their counterfeits dapoxetine, paroxetine, citalopram, tramadol, and yohimbine in aphrodisiac products. RSC Adv. 2021; 11, 8055–8064.
11. Boogaerts T., Quireyns M., Covaci A., de Loof H., van Nuijs A. L. N. Analytical method for the simultaneous determination of a broad range of opioids in influent wastewater: Optimization, validation and applicability to monitor consumption patterns. Talanta 2021; 232.
12. Lee J., Park J., Go A., Moon H., Kim S., Jung S., Jeong W, Chung H. Urine Multi-drug Screening with GC-MS or LC-MS-MS Using SALLE-hybrid PPT/SPE. J. Anal. Toxicol. 2018; 42, 617–624.
13. Adlnasab L., Shahdousti P., Ahmar H. Layered double hydroxide intercalated with tyrosine for ultrasonic-assisted microextraction of tramadol and methadone from biological samples followed by GC/MS analysis. Microchim. Acta 2020; 187, 265.
14. Sefaty B., Masrournia M., Es’haghi Z., Bozorgmehr M. R. Determination of Tramadol and Fluoxetine in Biological and Water Samples by Magnetic Dispersive Solid-Phase Microextraction (MDSPME) with Gas Chromatography- Mass Spectrometry (GC-MS). Anal. Lett. 2021; 54, 884–902.
15. Naguib I. A., Ali N. A., Elroby F. A., El Ghobashy M. R., Abdallah F. F. US FDA-validated green GC-MS method for analysis of gabapentin, tramadol and/or amitriptyline mixtures in biological fluids. Bioanalysis 2020; 12, 1521–1533.
16. Salem Rizk M., Sultan M., Mohamed D., MoussaTony R. Simultaneous determination of dantrolene and paracetamol in human plasma by liquid chromatography tandem mass spectrometry. J. Chromatogr. B 2021; 1179, 122816.
17. Geib T., Lento C., Wilson D. J., Sleno L. Liquid Chromatography- Tandem Mass Spectrometry Analysis of Acetaminophen Covalent Binding to Glutathione S-Transferases. Front. Chem. 2019; 7, 558.
18. Mohamed D., Hegazy M. A., Elshahed M. S., Toubar S. S., Helmy M. I. Liquid chromatography-tandem MS/ MS method for simultaneous quantification of paracetamol, chlorzoxazone and aceclofenac in human plasma: An application to a clinical pharmacokinetic study. Biomed. Chromatogr. 2018; 32, e4232.
19. Salih M. E., Aqel A., Abdulkhair B. Y., Alothman Z. A., Abdulaziz M. A., Badjah-Hadj-Ahmed A. Y. Simultaneous Determination of Paracetamol and Chlorzoxazone in Their Combined Pharmaceutical Formulations by Reversed-phase Capillary Liquid Chromatography Using a Polymethacrylate Monolithic Column. J. Chromatogr. Sci. 2018; 56, 819–827.
20. Vitha M. F. Chromatography: Principles and Instrumentation. Hoboken: John Wiley & Sons 2017.
21. Hrušková H., Voráčová I., Řemínek R., Foret F. Current applications of capillary electrophoresis-mass spectrometry for the analysis of biologically important analytes in urine (2017 to mid-2021): A review. J. Sep. Sci. 2022; 45, 305–324.
22. Wätzig H., Günter S. Capillary Electrophoresis – A High Performance Analytical Separation Technique. Clin. Chem. Lab. Med. 2003; 41, 724–738.
23. Zhang C., Woolfork A. G., Suh K., Ovbude S., Bi C., Elzoeiry M., Hage D. S. Clinical and pharmaceutical applications of affinity ligands in capillary electrophoresis: A review. J. Pharm. Biomed. Anal. 2020; 177, 112882.
24. Ciurba A., Hancu G., Cojocea L.-M., Sipos E., Todoran N. Development of new formulation and its evaluation by capillary electrophoresis of tablets containing tramadol hydrochloride and paracetamol. Pharm. Dev. Technol. 2014; 19, 833–838.
25. Gourmel C., Grand-Guillaume Perrenoud A., Waller L., Reginato E., Verne J., Dulery B., Veuthey J.-L., Rudaz S., Schappler J., Guillarme D. Evaluation and comparison of various separation techniques for the analysis of closely-related compounds of pharmaceutical interest. J. Chromatogr. A 2013; 1282, 172–177.
26. Soetebeer U. B., Schierenberg M.-O., Möller J.-G., Schulz H., Grünefeld G., Andresen P., Blaschke G., Ahr G. Capillary electrophoresis with laser-induced fluorescence in clinical drug development – Routine application and future aspects. J. Chromatogr. A 2000; 895, 147–155.
27. Cunha R. R., Ribeiro M. M. A. C., Muñoz R. A. A, Richter E. M. Fast determination of codeine, orphenadrine, promethazine, scopolamine, tramadol, and paracetamol in pharmaceutical formulations by capillary electrophoresis. J. Sep. Sci. 2017; 40, 1815–1823.
28. Dong Y., Liu E. Simultaneous Determination of Tramadol and Diltiazem in Waterbodies by Capillary Electrophoresis with End-Column Electrochemiluminescence Detection. Asian J. Chem. 2016; 28, 1239–1243.
29. Azhagvuel S., Sekar R. Method development and validation for the simultaneous determination of cetirizine dihydrochloride, paracetamol, and phenylpropanolamine hydrochloride in tablets by capillary zone electrophoresis. J. Pharm. Biomed. 2007; 43, 873–878.
30. Capella-Peiró M.-E., Bose D., Rubert M. F., Esteve- Romero J. Optimization of a capillary zone electrophoresis method by using a central composite factorial design for the determination of codeine and paracetamol in pharmaceuticals. J. Chromatogr. B 2006; 839, 95–101.
31. Chi Z., Azhar I., Khan H., Yang L., Feng Y. Automatic Dissolution Testing with High-Temporal Resolution for Both Immediate-Release and Fixed-Combination Drug Tablets. Sci. Rep. 2019; 9, 17114.
32. Vijaya Bhaskar Reddy A., Yusop Z., Jaafar J., Jamil N. H., Majid Z. A., Aris A. B. Development and Validation of Capillary Electrophoresis Method for Simultaneous Determination of Six Pharmaceuticals in Different Food Samples Combining On-line and Off-line Sample Enrichment Techniques. Food Anal. Methods 2018; 11, 533–545.
33. Sultan M. A., Maher H. M., Alzoman N. Z., Alshehri M. M., Rizk M.S ., Elshahed M. S., Olah I. V. Capillary electrophoretic determination of antimigraine formulations containing caffeine, ergotamine, paracetamol and domperidone or metoclopramide. J. Chromatogr. Sci. 2013; 51, 502–510.
34. Maráková K., Piešťanský J., Veizerová L., Galba J., Dokupilová S., Havránek E., Mikuš P. Multidrug analysis of pharmaceutical and urine matrices by on-line coupled capillary electrophoresis and triple quadrupole mass spectrometry. J. Sep. Sci. 2013; 36, 1805–1816.
35. Cunha R. R., Chaves S. C., Ribeiro M. M. A. C., Torres L. M. F. C., Muñoz R. A. A, Santos W. T. P. D., Richter E. M. Simultaneous determination of caffeine, paracetamol, and ibuprofen in pharmaceutical formulations by high-performance liquid chromatography with UV detection and by capillary electrophoresis with conductivity detection: Liquid Chromatography. J. Sep. Sci. 2015; 38, 1657–1662.
36. Zhao S., Bai W., Yuan H., Xiao D. Detection of paracetamol by capillary electrophoresis with chemiluminescence detection. Anal. Chim. Acta 2006; 559, 195–199.
37. Németh T., Jankovics P., Németh-Palotás J., Kőszegi- Szalai H. Determination of paracetamol and its main impurity 4-aminophenol in analgesic preparations by micellar electrokinetic chromatography. J. Pharm. Biomed. Anal. 2008; 47, 746–749.
38. Abdollahi-Aghdam A., Majidi M. R., Veladi H., Omidi Y. SU8/glass microchip capillary electrophoresis integrated with Pt electrodes for separation and simultaneous detection of phenylephrine and acetaminophen. Bioimpacts 2021; 11, 263–269.
39. Heitmeier S., Blaschke G. Direct determination of paracetamol and its metabolites in urine and serum by capillary electrophoresis with ultraviolet and mass spectrometric detection. J. Chromatogr. B Biomed. Sci. Appl. 1999; 721, 93–108.
40. Aladaghlo Z., Fakhari A. R., Hasheminasab K. S. Carrier assisted electromembrane extraction based on nonionic lipophilic surfactants for the determination of basic drugs in urine samples. Anal. Methods 2017; 9, 5659–5667.
41. Lehtonen P., Siren H., Ojanperä I., Kostiainen R. Migration behaviour and separation of tramadol metabolites and diastereomeric separation of tramadol glucuronides by capillary electrophoresis. J. Chromatogr. A 2004; 1041, 227–234.
42. Ju H. Simultaneous determination of ethamsylate, tramadol and lidocaine in human urine by capillary electrophoresis with electrochemiluminescence detection. Electrophoresis 2006; 27, 3467–3474.
43. Cao W., Liu L., Qiu H., Yang X., Wang E. Simultaneous determination of tramadol and lidocaine in urine by end-column capillary electrophoresis with electrochemiluminescence detection. Electroanalysis 2002; 14, 1571–1576.
44. Nordman N., Sikanen T., Moilanen M.-E., Aura S., Kotiaho T., Franssila S., Kostiainen R. Rapid and sensitive drug metabolism studies by SU-8 microchip capillary electrophoresis-electrospray ionization mass spectrometry. J. Chromatogr. A 2011; 1218, 739–745.
45. Hložek T., Křížek T., Tůma P., Bursová M., Coufal P., Čabala R. Quantification of paracetamol and 5-oxoproline in serum by capillary electrophoresis: Implication for clinical toxicology. J. Pharm. Biomed. Anal. 2017; 145, 616–620.
46. Reed P. A., Cardoso R. M., Muñoz R. A. A., Garcia C. D. Pyrolyzed cotton balls for protein removal: Analysis of pharmaceuticals in serum by capillary electrophoresis. Anal. Chim. Acta 2020; 1110, 90–97.
47. Saar-Reismaa P., Brilla C.-A., Leiman K., Kaljurand M., Vaher M., Kulp M., Mazina-Šinkar J. Use of a newly- developed portable capillary electrophoresis analyser to detect drugs of abuse in oral fluid: A case study. Talanta 2020; 211, 120662.
48. Bohnenstengel F., Kroemer H. K., Sperker B. In vitro cleavage of paracetamol glucuronide by human liver and kidney β-glucuronidase: determination of paracetamol by capillary electrophoresis. J. Chromatogr. B Biomed. Sci. Appl. 1999; 721, 295–299.
49. Wang L. Microdialysis Coupled with Capillary Electrophoresis Method for Continuous Monitoring of Free Tramadol in Rabbit Blood. Asian J. Chem. 2014; 26, 967–970.
50. Świądro M., Stelmaszczyk P., Wietecha-Posłuszny R., Dudek D. Development of a new method for drug detection based on a combination of the dried blood spot method and capillary electrophoresis. J. Chromatogr. B 2020; 1157, 122339.
51. Pantůčková P., Gebauer P., Boček P., Křivánková L. Electrolyte systems for on-line CE–MS: Detection requirements and separation possibilities. Electrophoresis 2009; 30, 203–214.
52. ICH Harmonised Tripartite Guideline: Validation of Analytical Procedures Q2 (R1) Step 4 Version 2005.
53. U.S. Department of Health and Human Services Food and Drug Administration, Center for Drug Evaluation and Research (CDER) Center for Veterinary Medicine (CVM). Bioanalytical Method Validation Guidance for Industry; US FDA: Rockville, MD, USA, 2018.
Labels
Pharmacy Clinical pharmacologyArticle was published in
Czech and Slovak Pharmacy
2022 Issue 2
Most read in this issue
- Verejní lekárnici a správna aplikácia inhalačných liekov
- Capillary zone electrophoresis in combination with UV detection for simultaneous determination of tramadol and paracetamol in pharmaceutical and biological samples
- Digoxin at sub-cardiotonic dose modulates the anticonvulsive potential of valproate, levetiracetam and topiramate in experimental primary generalized seizures
- Beliefs and knowledge related to nutritional supplements among pharmacy students