#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Surviving of production probiotic strains in a selected application form


Authors: Adriána Fečkaninová;  Jana Koščová;  Aleš Franc;  Dagmar Mudroňová;  Peter Popelka
Published in: Čes. slov. Farm., 2022; 71, 27-33
Category: Original Article
doi: https://doi.org/https://doi.org/10.5817/CSF2022-1-27

Overview

Research in probiotics for aquaculture is at an early stage of development and much work is still needed. Lactiplantibacilli belong to the microorganisms most frequently used to prepare the probiotics. The available information is inconclusive, since few experiments with sufficiently robust design have been conducted to permit critical evaluation. The development of probiotics applicable to commercial use in aquaculture is a multistep and multidisciplinary process requiring both empirical and fundamental research, full-scale trials, and an economic assessment of its use. The aim of the study was to prepare a probiotic aquafeed via excipients and subsequently to observe the survival of probiotic bacterial cells in the feed during the nine months storage period at a refrigerator (4 °C) or room temperature (22 °C). The strain Lactobacillus plantarum R2 Biocenol™ (CCM 8674) (according to the new taxonomy Lactiplantibacillus plantarum), potentially usable as a probiotic in aquaculture, was administered to prepare the aquafeed. Better survival of probiotic bacterial cells was recorded in a samples of pellets A (Aquatex 41 HMD) compared to the samples of probiotic pellets B (Inicio 918-2). Since oxidation of fatty acids in feed affects the nutritional quality of individual feed components, we assume that higher amounts of oil in feed B negatively affected the survival of probiotic bacterial cells. The highest numbers of viable probiotic bacteria cells were recorded at 4 °C storage of probiotic feed samples. The number of lactiplantibacilli dropped from 7.30 log10CFU . g–1 to 5.57 log10CFU . g–1 after the nine months storage period of feed samples A at 4 °C. Temperature is considered as a critical factor influencing probiotic viability and survival during storage period.

Keywords:

viability – excipients – coating – aquafeed – Lactiplantibacillus plantarum


Sources

1. Sampels S. Kvalita a gastronomie ryb a rybích výrobků. Vodňany: Jihočeská univerzita v Českých Budějovicích 2014.

2. Cruz M. P., Ibáñez A. L., Hermosillo O. A. M., Saad H. C. R. Use of Probiotics in Aquaculture. ISRN Microbiology 2012; 2012, 1–13.

3. Sica G. M., Brugnoni L. I., Marucci P. A., Cubitto M. A. Characterization of probiotic properties of lactic acid bacteria isolated from an estuarine environment for application in rainbow trout (Oncorhynchus mykiss Walbaum) farming. Antonie van Leeuwenhoek 2012; 101, 869–879.

4. Austin A. D., Austin B. Bacterial Fish Pathogens: Diseases of Farmed and Wild Fish. London: Springer 2012.

5. Lara-Flores M. The use of probiotic in aquaculture: an overview. Inter. Res. J. Microbiol. 2011; 2, 471–478.

6. Smith P. Antimicrobial resistance in aquaculture. Rev. Sci. Tech. 2008; 27, 243–264.

7. Carvalho D. E., David S. G., Silva J. R. Health and environment in aquaculture. Rijeka: InTech 2012.

8. Newaj-Fyzul A., Al-Harbi A. H., Austin B. Review: Developments in the use of probiotics for disease control in aquaculture. Aquaculture 2014; 431, 1–11.

9. FAO/WHO. Guidelines for the evaluation of probiotics in food: joint fao/who working group meeting, London Ontario, Canada, 30 April-1 May 2002; 11 p. http:www. who.int/foodsafety/publications/fs_management/probiotics2/ en/index.html

10. Merrifield D. L., Dimitroglou A., Foey A., Davies S. J., Baker R. T. M., Bøgvald J., Castex M., Ringø E. The current status and future focus of probiotic and prebiotic applications for salmonids. Aquaculture 2010a; 302, 1–18.

11. Giraffa G., Chanishvili N., Widyastuti Y. Importance of lactobacilli in food and feed biotechnology. Res. Microbiol. 2010; 161, 480–487.

12. Amstrong O. D., Atamu D., Orhomedia E. H., Destiny A. Effect of different storage temperatures on the viabilities change of probiotics in the fish feed. Int. J. Biotechnol. Biochem. 2016; 5, 697–701.

13. Zheng J., Wittouck S., Salvetti E., Franz C. M. A. P., Harris H. M. B., Mattarelli P., Toole P., Pot B., Vandamme P., Walter J., Watanabe K., Wuyts S., Felis G. E., Gänzle M. G., Lebeer S. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020; 70, 2782–2858.

14. Fečkaninová A., Koščová J., Mudroňová D., Schusterová P., Cingeľová Maruščáková I., Popelka P. Characterization of two novel lactic acid bacteria isolated from the intestine of rainbow trout (Oncorhynchus mykiss, Walbaum) in Slovakia. Aquaculture 2019; 506, 294–301.

15. Nikoskelainen S., Ouwehand A., Salminen S., Bylund, G. Protection of rainbow trout Oncorhynchus mykiss from furunculosis by Lactobacillus rhamnosus. Aquaculture 2001; 198, 229–236.

16. Brunt J., Austin B. Use of a probiotic to control lactococcosis and streptococcosis in rainbow trout, Oncorhynchus mykiss (Walbaum). J. Fish Dis. 2005; 28, 693–701.

17. Gildberg A., Mikkelsen H., Sandaker E., Ringø E. Probiotic effect of lactic acid bacteria in the feed on growth and survival of fry of Atlantic cod (Gadus morhua). Hydrobiologia. 1997; 352, 279–285.

18. Gildberg A., Ikkelsen H. Effects of supplementing the feed to Atlantic cod (Gadus morhua) fry with lactic acid bacteria and immuno-stimulating peptides during a challenge trial with Vibrio anguillarum. Aquaculture 1998; 167, 103–113.

19. Kim D. H., Austin B. Innate immune responses in rainbow trout (Oncorhynchus mykiss, Walbaum) induced by probiotics. Fish Shellfish Immunol. 2006; 21, 513–524.

20. Newaj-Fyzul A., Adesiyun A. A., Mutani A., Ramsubhag A., Brunt J., Austin B. Bacillus subtilis AB1 controls Aeromonas infection in rainbow trout (Oncorhynchus mykiss, Walbaum). J. Appl. Microbiol. 2007; 103, 1699–1706.

21. Merrifield D. L., Bradley G., Harper G. M., Baker R. T. M., Munn C. B., Davies S. J. Assessment of the effects of vegetative and lyophilized Pediococcus acidilactici on growth, feed utilization, intestinal colonization and health parameters of rainbow trout (Oncorhynchus mykiss Walbaum). Aquac. Nutr. 2011; 17, 73–79.

22. Merrifield D. L., Bradley G., Baker R. T. M., Davies S. J. Probiotic applications for rainbow trout (Oncorhynchus mykkis Walbaum) II. Effects on growth performance, feed utilisation, intestinal microbiota, and related health criteria postantibiotic treatment. Aquac. Nutr. 2010; 16, 496–503.

23. FAO (Food and Agriculture Organization of the United Nations). Rainbow trout – feed formulation. 2018; http://www.fao.org/fishery/affris/species-profiles/rainbow- trout/feed-formulation/en/

24. Krause D. O., Bhandari S. K., House J. D., Nyachoti C. M. Response of nursery pigs to a synbiotic preparation of starch and an anti-Escherichia coli K88 probiotic. Appl. Environ. Microbiol. 2010; 76, 8192–8200.

25. Huff G. R., Huff W. E., Rath N. C., El-Gohary F. A., Zhou Z. Y., Shini S. Efficacy of a novel prebiotic and a commercial probiotic in reducing mortality and production losses due to cold stress and Escherichia coli challenge of broiler chicks. Poult. Sci. 2015; 94, 918–926.

26. Kosin B., Rakshit S. K. Microbial and Processing Criteria for Production of Probiotics: A Review. Food Technology and Biotechnology 2006; 44, 371–379.

27. Ringø E., Bendiksen H. R., Gausen S. J., Sundsfjord A., Olsen R. E. The effect of dietary fatty acids on lactic acid bacteria associated with the epithelial mucosa and from faecalia of Arctic charr, Salvelinus alpinus (L.). J. Appl. Microbiol. 1998; 85, 855–864.

28. Turchini G., Ng W. K., Tochler D. Fish Oil Replacement and Alternative Lipid Sources in Aquaculture Feeds. Boca Raton: CRC Press 2010.

29. Wanka K. M., Damerau T., Costas B., Krueger A., Schulz C., Wuertz S. Isolation and characterization of native probiotics for fish farming. BMC Microbiology 2018; 18, 119.

30. Wirunpan M., Savedboworn W., Wanchaitanawong P. Survival and shelf life of Lactobacillus lactis 1464 in shrimp feed pellet after fluidized bed drying. Agric. Nat. Resour. 2016; 50, 1–7.

31. Ayo-Olalusi C. I., Adeiga A., Akintunde G. B., Oramadike C. E., Awoderu T. Viability of Lactobacillus brevis1, Lactobacillus plantarum and Pediococcus pentosaceus 2 isolated from fish gut after incorporation into the fish feed. Int. J. Biotechnol. Res. 2014; 2, 97–101.

32. Niu K. M., Kothari D., Lee W. D., Lim J. M., Khosravi S., Lee S. M., Lee B. J., Kim W. K., Han H. S., Kim S. K. Autochthonous Bacillus licheniformis: Probiotic potential and survival ability in low‐fishmeal extruded pellet aquafeed. MicrobiologyOpen 2019; 8, 767.

33. Ringø E., Zhou Z., Vecino J. L. G., Wadsworth S., Romero J., Krogdahl A., Olsen, R. E., Dimitroglou A., Foey A., Davies S., Owen M., Lauzon H. L., Martinsen L. L., De Schryver P., Bossier P., Sperstad, S., Merrifield D. L. Effect of dietary components on the gut microbiota of aquatic animals. A never-ending story? Aquac. Nutr. 2016; 22, 219–282.

34. Azevedo R. V., Filho J. C. F., Cardoso L. D., Mattos D. C., Vidal Junior M. V., Andrade D. R. Economic evaluation of prebiotics, probiotics and symbiotics in juvenile Nile tilapia. Rev. Ciên. Agron. 2015; 46, 72–79.

Labels
Pharmacy Clinical pharmacology
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#