THE BRAF MUTATION AND THE POSSIBILITIES OF UVEAL MELANOMA METASTASING PROGNOSTIC MARKERS’ IDENTIFICATION
Authors:
K. Horkovičová 1; J. Markus 2; I. Krčová 1; P. Babál 3; D. Kobzová 3; B. Smolková 4
Authors‘ workplace:
Klinika oftalmológie Lekárskej fakulty Univerzity Komenského a Univerzitnej nemocnice, Nemocnica Ružinov, Bratislava
1; Oddelenie genetiky, Onkologický ústav sv. Alžbety, Bratislava
2; Ústav patologickej anatómie LFUK a UNB, Bratislava
3; Ústav experimentálnej onkológie BMC SAV, Bratislava
4
Published in:
Čes. a slov. Oftal., 72, 2016, No. 4, p. 149-156
Category:
Original Article
Overview
Aim:
The aim is to assess the BRAF gene mutations in patients with posterior uveal melanoma.
Material and methods:
Retrospective analysis of the group of patients with malignant melanoma of the uvea, who were indicated to enucleation between 1.1 2015 to 1.3.2016. We analyzed stage of uveal melanoma, volume, cell type and BRAF gene mutations.
Results:
In clinical study of 20 patients after enucleation due to uveal melanoma at the Department of Ophthalmology in Bratislava, patient age was ranged from 22 to 89 years with a median of 62 years. In 14 patients (70 %) enucleation was the primary treatment and in 6 patients (30 %) enucleation was after irradiation (brachytherapy, Leksell gama knife, linear accelerator). In 17 cases (85 %) the mutation of the BRAF gene was negative and in 3 cases the sample was not assessable for the BRAF mutation.
Conclusion:
BRAF gene mutation is confirmed by several studies found in malignant melanoma of the skin. The histopathology findings in our group did not confirmed our theory, that since the uveal melanoma itself has the similar origin as skin melanoma, should also contain a BRAF mutation.
Key words:
malignant melanoma of the uvea, mutation of the BRAF gene, chromosomal abnormalities as a prognostic factor
Sources
1. Aalto, Y., Eriksson, L., Seregard, S., et al.: Concomitant loss of chromosome 3 and whole arm losses and gains of chromosome 1, 6, or 8 in metastasizing primary uveal melanoma. Invest Ophthalmol Vis Sci, 2001; 42(2): 313–317.
2. Bayani, J., Selvarajah, S., Maire, G. et al.: Genomic mechanisms and measurement of structural and numerical instability in cancer cells. Semin Cancer Biol, 2007; 17(1): 5–18.
3. Brown, GC., Hoek, JB., Kholodenko, BN.: Why do protein kinase cascades have more than one level? Trends in Biochemical Sciences, 1997; 22(8): 288.
4. Castedo, M., Coquelle, A., Vitale, I. et al.: Selective resistance of tetraploid cancer cells against DNA damage-induced apoptosis. Ann N Y Acad Sci, 2006; 1090: 35–49.
5. Cohen,Y., Goldenberg-Cohen,N., Parrella,P., et all.: Lack of BRAF Mutation in Primary Uveal Melanoma. Invest. Ophthalmol. Vis. Sci, 2003; 44(7): 2876–2878.
6. Cruz, F., Rubin, BP, Wilson, D. et al.: Absence of BRAF and NRAS mutations in uveal melanoma. Cancer Res, 2003; Sep 15; 63(18): 5761–6.
7. Curry, JL., Torres-Cabala, CA., Tetzlaff, MT. et al.: Molecular platforms utilized to detect BRAF V600E mutation in melanoma. Seminars in Cutaneous Medicine and Surgery, 2012; 31(4): 267–273.
8. Davies, H., Bignell, G.R., Cox, C. et al.: Mutations of the BRAF gene in human cancer. Nature, 2002; 417(6892): 949-954.
9. Eggermont, A.M., Suciu, S., Santinami, M. et al.: EORTC 18991 phase III trial: Long-term adjuvant pegylated interferon-α2b (PEG-IFN) versus observation in resected stage III melanoma: Long-term results at 7.6 years follow-up. J Clin Oncol, 2011; 21: suppl; abstr 8506b.
10. Ehlers, J.P., Worley, L. Onken, M.D. et al.: Integrative genomic analysis of aneuploidy in uveal melanoma. Clin Cancer Res, 2008; 14(1): 115–122.
11. Furdová, A., Furdová, Ad., Krásnik, V., Krčová, I., Horkovičová, K.: Exenterácia očnice pre malígny melanóm choroidey v štádiu T4; možnosti epitetického riešenia. Čes a slov Oftalmol, 2015; 71(3): 150-157.
12. Furdová, A., Oláh, Z.: Nádory oka a okolitých štruktúr. Brno: Akademické nakladatelství CERM, 2010, 151 s.
13. Furdová A, Růžička J, Sramka M. et.al.:. Choroidal melanoma stage T1 - comparison of the planning protocol for stereotactic radiosurgery and proton beam irradiation. Čes a slov Oftalmol, 2012; 68(4): 156–61.
14. Furdová A, Strmeň P, Šramka M. Complications in patients with uveal melanoma after stereotactic radiosurgery and brachytherapy. Bratisl Lek Listy, 2005; 106(12): 401–6.
15. Furdová A., Šramka M., Waczulíková I. et.al.: Stereotaktická rádiochirurgia (Linac) uveálnych melanómov; postradiačné komplikácie. Čes a slov Oftal, 2015; 71(3): 135–141.
16. Furdova, A., Sramka, M.: Uveal malignant melanoma and stereotactic radiosurgery. Intraocular uveal melanoma and one-day session stereotactic radiosurgery at linear accelerator. Saarbrűcken: LAP LAMBERT Academic Publishing, 2014; 181 p.
17. Furdová, A., Šramka, M., Chorváth, M. et.al.: Stereotactic radiosurgery intraocular malignant melanoma – retrospective study. Neuroendocrinology Letters, 2014; 35(1): 28–36.
18. Furdová A, Strmeň P, Waczulíková I. et al.: One-day session LINAC-based stereotactic radiosurgery of posterior uveal melanoma. Eur J Ophthalmol, 2012; 22(2): 226–235.
19. Furdová A.: Malígny melanóm v oku. Via Pract, 2008; 5(11): 480–482.
20. Gaudi, S., Messina, J. et al.: Molecular Bases of Cutaneous and Uveal Melanomas Pathology Research International, 2011; 2011, 8 p.
21. Hausler, T., Stang, A., Anastassiou, G., et al: Loss of heterozygosity of 1p in uveal melanomas with monosomy 3. Int J Cancer, 2005, 116(6): 909–913.
22. Hlavatá Z.: Biologická liečba malígneho melanómu. Farmakoterapia, 2013, 3(1): 60–64.
23. Hoglund, M., Gisselsson, D., Hansen, G.B., et al.: Dissecting karyotypic patterns in malignant melanomas: temporal clustering of losses and gains in melanoma karyotypic evolution. Int J Cancer, 2004, 108(1): 57–65.
24. Horsman, D.E., White, V.A.: Cytogenetic analysis of uveal melanoma. Consistent occurrence of monosomy 3 and trisomy 8q. Cancer, 1993, 71(3): 811–819.
25. Hughes, S., Damato, B.E., Giddings, I., et al.: Microarray comparative genomic hybridisation analysis of intraocular uveal melanomas identifies distinctive imbalances associated with loss of chromosome 3. Br J Cancer, 2005; 93(10): 1191–1196.
26. Chong, H., Lee, J., Guan, KL.: Positive and negative regulation of Raf kinase activity and function by phosphorylation. EMBO Journal, 2001; 20: 3716–3727.
27. Inamdar, G.S., Madhunapantula, S.V, Robertson, G.P.: Targeting the MAPK pathway in melanoma: why some approaches succeed and other fail. Biochem Pharmacol, 2010; 80(5): 624–637.
28. Kaneko, Y., Knudson, A.G.: Mechanism and relevance of ploidy in neuroblastoma. Genes Chromosomes Cancer, 2000, 29(2): 89–95.
29. Katona, T.M., Jones, T.D., Wang, M., et al.: Genetically heterogeneous and clonally unrelated metastases may arise in patients with cutaneous melanoma. Am J Surg Pathol. 2007, 31(7): 1029–1037.
30. Kilic, E., Naus, N.C., van Gils, W., et al.: Concurrent loss of chromosome arm 1p and chromosome 3 predicts a decreased disease-free survival in uveal melanoma patients. Invest Ophthalmol Vis Sci, 2005, 46(7): 2253–2257.
31. Kops, G.J., Weaver, B.A., Cleveland, D.W.: On the road to cancer: aneuploidy and the mitotic checkpoint. Nat Rev Cancer, 2005, 5(10):773–785.
32. Landreville, S., Agapova, O.A., Harbour, J.W.: Emerging insights into the molecular pathogenesis of uveal melanoma. Future Oncol, 2008; 4(5): 629–636.
33. Matallanas, D., Birtwistle, M., Romano, D. et al.: Raf Family Kinases. Genes & Cancer, 2011; 2(3): 232–260.
34. Nguyen, H.G., Ravid, K.: Tetraploidy/aneuploidy and stem cells in cancer promotion: The role of chromosome passenger proteins. J Cell Physiol, 2006; 208(1):1–22.
35. Olaharski, A.J., Sotelo, R., Solorza-Luna, G., et al.: Tetraploidy and chromosomal instability are early events during cervical carcinogenesis. Carcinogenesis, 2006; 27(2): 337–343.
36. Onken, M.D., Worley, L.A., Person, E., et al.: Loss of heterozygosity of chromosome 3 detected with single nucleotide polymorphisms is superior to monosomy 3 for predicting metastasis in uveal melanoma. Clin Cancer Res, 2007; 13(10): 2923–2927.
37. Parrella, P., Fazio, V.M., Gallo, A.P., et al.: Fine mapping of chromosome 3 in uveal melanoma: identification of a minimal region of deletion on chromosomal arm 3p25.1-p25.2. Cancer Res, 2003; 63(23): 8507–8510.
38. Patel, K.A., Edmondson, N.D., Talbot, F., et al.: Prediction of prognosis in patients with uveal melanoma using fluorescence in situ hybridisation. Br J Ophthalmol, 2001; 85(12): 1440–1444.
39. Prescher, G., Bornfeld, N., Becher, R.: Two subclones in a case of uveal melanoma. Relevance of monosomy 3 and multiplication of chromosome 8q. Cancer Genet Cytogenet, 1994; 77(2): 144–146.
40. Prescher, G., Bornfeld, N., Friedrichs, W., et al.: Cytogenetics of twelve cases of uveal melanoma and patterns of nonrandom anomalies and isochromosome formation. Cancer Genet Cytogenet, 1995; 80(1): 40–46.
41. Prescher, G., Bornfeld, N., Hirche, H., et al.: Prognostic implications of monosomy 3 in uveal melanoma. Lancet. 1996, 347(9010): 1222–1225.
42. Rimoldi, D., Salvi, S., Liénard, D., et al.: Lack of BRAF Mutations in Uveal Melanoma. Cancer Res September, 15: 2003 63: 5712.
43. Rodríguez-Viciana, P., Sabatier, C., McCormick, F.: Signalling specificity by Ras family GTPases is determined by the full spectrum of effectors they regulate. Molecular and Cell Biology, 2010; 24: 4943–4954.
44. Roskoski R.: RAF protein-serine/threonine kinases: Structure and regulation. Biochemical and Biophysical Research Communications. 2010, 399: 313–317.
45. Sisley, K., Rennie, I.G., Parsons, M.A., et al.: Abnormalities of chromosomes 3 and 8 in posterior uveal melanoma correlate with prognosis. Genes Chromosomes Cancer, 1997; 19(1): 22–28.
46. Svetlošáková, Z., Krásnik, V.: Malígny melanóm – diagnostika, liečba, prognóza. Onkológia, 2012; 7(1): 35–37.
47. Wellbrock, C., Ogilvie, L., Hadley, D., et al.: V599EB-RAF is an Oncogene in Melanocytes. Cancer Research, 2004; 64: 2338–2342.
48. White, V.A., Chambers, J.D., Courtright, P.D., et al.: Correlation of cytogenetic abnormalities with the outcome of patients with uveal melanoma. Cancer, 1993; 83(2): 354–359.
49. Ye, C.J., Liu, G., Bremer, S.W., et al.: The dynamics of cancer chromosomes and genomes. Cytogenet Genome Res, 2007; 118(2-4): 237–246.
50. Zebisch, A., Troppair, J.: Back to the roots: the remarkable RAF oncogene story. Cellular and Molecular Life Sciences, 2006; 63: 1314–1330.
Labels
OphthalmologyArticle was published in
Czech and Slovak Ophthalmology
2016 Issue 4
Most read in this issue
- Gene Therapy for Inherited RETINAL AND OPTIC NERVE Disorders: Current Knowledge
- Haemangiomas are Common Benign Tumors of the Child
- New Diagnostic Imaging Technique – Shear Wave Elastography
- Ocular Motility Disorders with Diplopia Like the first Symptoms of Paranasal Tumours with Orbital Invasion – a Case Report