#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Selected biomarkers associated with atherosclerosis and bone metabolism


Authors: Demková Katarína;  Tkáč Ivan
Authors‘ workplace: IV. interná klinika LF UPJŠ a UNLP, Košice
Published in: Clinical Osteology 2020; 25(3): 115-119
Category:

Overview

Atherosclerosis is characterized by persistent inflammation of the vascular wall and is considered to be a major cause contributing to the development of cardiovascular disease, which is the leading cause of death worldwide. Due to the prevalence of atherosclerosis and its complications, the need for early and, if possible, non-invasive dia­gnosis is increasing in order to prevent the development of fatal or disabling complications of atherosclerosis. Ima­ging methods as well as clinical examinations are used for the detection of atherosclerotic plaques, which capture up to hemodynamically significant plaques. Better prevention of atherosclerosis requires the search for high-risk indivi­duals in early stages. Inflammation manifests itself throughout the course of atherogenesis, i.e. also in the stage of subclinical atherosclerosis, when it is possible to determine the concentration of inflammatory biomarkers in the blood. Biomarkers are of interest for the simplicity of determination in plasma or serum and the possibility of their use for diagnostic, prognostic and therapeutic purposes. Positive correlations with atherosclerosis and its complications have been demonstrated in biomarkers associated with bone metabolism such as fibroblast growth factor 23, osteocalcin, osteoglycin, osteopontin or osteoprotegerin.

Keywords:

fibroblast growth factor 23 – osteocalcin – osteoglycin – osteopontin – osteoprotegerin


Sources
  1. Reyes-García R, Rozas-Moreno P, Muñoz-Torres M. Cardiovascular disease and bone metabolism. Endocrinol Nutr 2011; 58(7): 353–359. Dostupné z DOI: <http://dx.doi.org/10.1016/j.endonu.2011.05.004>.

  2. He X, Hu X, Ma X et al. Elevated serum fibroblast growth factor 23 levels as an indicator of lower extremity atherosclerotic disease in Chinese patients with type 2 diabetes mellitus. Cardiovasc Diabetol 2017; 161): 77. Dostupné z DOI: <http://dx.doi.org/10.1186/s12933–017–0559-x>.

  3. Scialla JJ, Xie H, Rahman M et al. Fibroblast Growth Factor-23 and Cardiovascular Events in CKD. J Am Soc Nephrol 2014; 25(2): 349–360. Dostupné z DOI: <http://dx.doi.org/10.1681/ASN.2013050465>.

  4. Yoda K, Imanishi Y, Yoda M et al. Impaired Response of FGF-23 to Oral Phosphate in Patients with Type 2 Diabetes: A Possible Mechanism of Atherosclerosis. J Clin Endocrinol Metab 2012; 97(11): 2036–2043. Dostupné z DOI: <http://dx.doi.org/10.1210/jc.2012–2024>.

  5. Tuñón J, Fernández-Fernández B, Carda R et al. Circulating fibroblast growth factor-23 plasma levels predict adverse cardiovascular outcomes in patients with diabetes mellitus with coronary artery disease. Diabetes Metab Res Rev 2016; 32(7): 685–693. Dostupné z DOI: <http://dx.doi.org/10.1002/dmrr.2787>.

  6. Biscetti F, Straface G, Pitocco D et al. Fibroblast growth factor 23 serum level in type 2 diabetic italian subjects with peripheral arterial disease and critical limb ischemia. Eur Rev Med Pharmacol Sci 2016; 20(19): 4048–4054.

  7. Seki T, Saita E, Kishimoto Y et al. Low Levels of Plasma Osteoglycin in Patients with Complex Coronary Lesions. J Atheroscler Thromb 2019; 25(11): 1149–1155. Dostupné z DOI: <http://dx.doi.org/10.5551/jat.43059>.

  8. Hu Y, Liu J, Zhao Q et al. Correlation between mimecan expression and coronary artery stenosis in patients with coronary heart disease. Int J Clin Exp Med 2015; 8(11): 21641–21646.

  9. Cheng JM, Akkerhuis KM, Meilhac O et al. Circulating Osteoglycin and NGAL/MMP9 Complex Concentrations Predict 1-Year Major Adverse Cardiovascular Events After Coronary Angiography. Arterioscler Thromb Vasc Biol 2014; 34(5): 1078–1084. Dostupné z DOI: <http://dx.doi.org/10.1161/ATVBAHA.114.303486>.

  10. Lok ZS, Lyle AN. Osteopontin in Vascular Disease: Friend or Foe?. Arterioscler Thromb Vasc Biol 2019; 39(4): 613–622. Dostupné z DOI: <http://dx.doi.org/10.1161/ATVBAHA.118.311577>.

  11. Biscetti F, Porreca CF, Bertucci F et al. TNFRSF11B gene polymorphisms increased risk of peripheral arterial occlusive disease and critical limb ischemia in patients with type 2 diabetes. Acta Diabetol 2014; 51(6): 1025–1032. Dostupné z DOI: <http://dx.doi.org/10.1007/s00592–014–0664–1>.

  12. Pérez de Ciriza C, Lawrie A, Varo N. Osteoprotegerin in Cardiometabolic Disorders. Int J Endocrinol 2015; 2015: 564934. Dostupné z DOI: <http://dx.doi.org/10.1155/2015/564934>.

  13. Nehring P, Mrozikiewicz-Rakowska B, Sobczyk-Kopcioł A et al. Osteoprotegerin gene rs2073617 and rs3134069 polymorphisms in type 2 diabetes patients and sex – specific rs2073618 polymorphism as a risk factor for diabetic foot. Pol Arch Med Wewn 2013; 123(4): 176–182. Dostupné z DOI: <http://dx.doi.org/10.20452/pamw.1684>.

  14. Song DH, Zhou PZ, Xiu XL et al. Relationships of OPG Genetic Polymorphisms with Susceptibility to Cardiovascular Disease: A Meta – Analysis. Med Sci Monit 2016; 22: 1223–1231. Dostupné z DOI: <http://dx.doi.org/10.12659/msm.895434>.

  15. Özkalayci F, Gülmez O, Uğur-Altun B et al. The Role of Osteoprotegerin as a Cardioprotective Versus Reactive Inflammatory Marker: the Chicken or the Egg Paradox. Balkan Med J 2018; 35(3): 225–232. Dostupné z DOI: <http://dx.doi.org/10.4274/balkanmedj.2018.0579>.

  16. Guo C, Hu F, Zhang S et al. Association between osteoprotegerin gene polymorphisms and cardiovascular disease in type 2 diabetic patients. Genet Mol Biol 2013; 36(2): 177–182. Dostupné z DOI: <http://dx.doi.org/10.1590/S1415–47572013005000024>.

  17. Demková K, Kozárová M, Malachovská Z et al. Osteoprotegerin concentration is associated with the presence and severity of peripheral arterial disease in type 2 diabetes mellitus. VASA 2018; 47(2): 131–135. Dostupné z DOI: <http://dx.doi.org/10.1024/0301–1526/a000682>.

  18. Kužma M et al. Prediktívna hodnota mikroRNA v diagnostike a prognóze srdcového zlyhania a osteoporózy. Osteologický bulletin 2017; 22(4): 142–145.

  19. Min PK, Chan SY. The Biology of Circulating MicroRNAs in Cardiovascular Disease. Eur J Clin Invest 2015; 45(8): 860–874.

  20. Fröhlich LF. MicroRNAs at the Interface between Osteogenesis and Angiogenesis as Targets for Bone Regeneration. Cells 2019; 8(2): 121.

  21. Kullo IJ, Leeper NJ. The Genetic Basis of Peripheral Arterial Disease: Current Knowledge, Challenges and Future Directions. Circ Res 2015; 116(9): 1551–1560.

  22. Koriyama H et al. Identification of Evidence Suggestive of an Association with Peripheral Arterial Disease at the OSBPL10 Locus by Genome – Wide Investigation in the Japanese Population. J Atheroscler Thromb 2010; 17(10): 1054–1062.

Labels
Clinical biochemistry Paediatric gynaecology Paediatric radiology Paediatric rheumatology Endocrinology Gynaecology and obstetrics Internal medicine Orthopaedics General practitioner for adults Radiodiagnostics Rehabilitation Rheumatology Traumatology Osteology
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#