#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

SNHG7 a FAIM2 jsou ve tkáni kolorektálního karcinomu up-regulovány a koexprimovány


Authors: Farinaz Ziaee 1;  Mohammadreza Hajjari 1;  Reza Seyed Kazeminezhad 1;  Mehrdad Behmanesh 2
Authors‘ workplace: Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran 1;  Department of Genetics, Faculty of Biological Science, Tarbiat Modares University (TMU), Tehran, Iran 2
Published in: Klin Onkol 2020; 33(6): 445-449
Category:

Overview

Východiska: Očekává se, že během několika let celosvětově vzroste výskyt kolorektálního karcinomu (CRC) o 60 %. Přes pokroky v chirurgických technikách a v chemoterapii značná část pacientů s CRC vykazuje špatnou odpověď na léčbu. To jsou fakta, která svědčí o důležitosti identifikace molekulárních bio­markerů jakožto potenciálních léčebných cílů. Iniciace, růstu, progrese a metastazování nádorů, jako je např. CRC, se účastní dlouhé nekódující RNA (lnc RNA). Tato skupina nekódujících RNA je tedy známa jako bio­marker pro dia­gnózu a prognózu tohoto nádorového onemocnění. Materiál a metody: V této experimentální studii byla provedena extrakce celkové RNA z tkání, syntéza komplementární DNA a kvantitativní polymerázová řetězová reakce v reálném čase (qRT-PCR). Pro kvantifikaci míry exprese lncRNA-SNHG7 a FAIM2 byla použita komparativní metoda „cycle threshold“. Relativní množství lncRNA-SNHG7 a FAIM2 bylo vypočítáno pomocí vztahu 2 -DDCT. Výsledky: Z výsledků qRT-PCR vyplynulo, že v porovnání s normálními tkáněmi bylo ve tkání CRC zvýšené množství SNHG7, který byl jako lncRNA popsán teprve nedávno, a FAIM2. Závěr: Naše studie svědčí o potenciální důležitosti exprese SNHG7 and FAIM2 a o důležitosti provedení více studií v budoucnu.

Klíčová slova:

lncRNA-SNHG7 – FAIM2 – kolorektální karcinom


Sources

1. Arnold M, Sierra MS, Laversanne M et al. Global patterns and trends in colorectal cancer incidence and mortality. Gut 2016; 66 (4): 683–691. doi: 10.1136/gutjnl-2015-310912.

2. Deen KI, Silva H, Deen R et al. Colorectal cancer in the young, many questions, few answers. World J Gastroint Oncol 2016; 8 (6): 481–488. doi: 10.4251/wjgo.v8.i6.481.

3. Haggar FA, Boushey RP. Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors. Clini Colon Rectal Surg 2009; 22 (4): 191–197. doi: 10.1055/s-0029-1242458.

4. Lu M, Liu Z, Li B et al. The high expression of long non-coding RNA PANDAR indicates a poor prognosis for colorectal cancer and promotes metastasis by EMT pathway. J Cancer Res Clin Oncol 2017; 143 (1): 71–81.doi: 10.1007/s00432-016-2252-y.

5. Hajjari M, Salavaty A. HOTAIR: an oncogenic long non-coding RNA in different cancers. Cancer Biol Med 2015; 12 (1): 1.9– doi: 10.7497/j.issn.2095-3941.2015.0006.

6. Ren J, Yang Y, Xue J et al. Long noncoding RNA SNHG7 promotes the progression and growth of glioblastoma via inhibition of miR-5095. Biochem Biophys Res Com 2018; 496 (2): 712–718. doi: 10.1016/j.bbrc.2018.01.109.

7. Gu L-Q, Xing X-L, Cai H et al. Long non-coding RNA DILC suppresses cell proliferation and metastasis in colorectal cancer. Gene 2018. 666: 18–26. doi: 10.1016/j.gene.2018.03.100.

8. Paralkar VR, Weiss MJ. Long noncoding RNAs in bio­logy and hematopoiesis. Blood 2013; 121 (24): 4842–4846. doi: 10.1182/blood-2013-03-456111.

9. Wang F, Ni H, Sun F et al. Overexpression of lncRNA AFAP1-AS1 correlates with poor prognosis and promotes tumorigenesis in colorectal cancer. Biomed Pharmacother 2016; 81: 152–159. doi: 10.1016/j.bio­pha.2016.04.009.

10. Cui H, Zhang Y, Zhang Q et al. A comprehensive genome-wide analysis of long noncoding RNA expression profile in hepatocellular carcinoma. Cancer medicine 2017; 6 (12): 2932–2941. doi: 10.1002/cam4.1180.

11. Han Y, Yang Y-n, Yuan H-h et al. UCA1, a long non-coding RNA up-regulated in colorectal cancer influences cell proliferation, apoptosis and cell cycle distribution. Pathology 2014; 46 (5): 396–401. doi: 10.1097/PAT.0000000000000125.

12. Ding J, Lu B, Wang J et al. Long non-coding RNA Loc554202 induces apoptosis in colorectal cancer cells via the caspase cleavage cascades. J Exp Clin Cancer Res 2015; 34 (1): 100. doi: 10.1186/s13046-015-0217-7.

13. Li Z, Yu X, Shen J. ANRIL: a pivotal tumor suppressor long non-coding RNA in human cancers. Tumor Biol 2016; 37 (5): 5657–5661. doi: 10.1007/s13277-016-4808-5.

14. Wang M, Liu J, Liu Q et al. LncRNA SNHG7 promotes the proliferation and inhibits apoptosis of gastric cancer cells by repressing the P15 and P16 expression. Eur Rev Med Pharmacol Sci 2017; 21 (20): 4613-4622.

15. Zhou M, Zhong L, Xu W et al. Discovery of potential prognostic long non-coding RNA bio­markers for predicting the risk of tumor recurrence of breast cancer patients. Sci Rep 2016; 6: 31038. doi: 10.1038/srep31038.

16. Leng J, Xiong W, Wang X et al. Long non-coding RNA SNHG7 promotes proliferation and self-renewal of glioblastoma cells. Int J Clin Exp Pathol 2016; 9 (11): 11352–11360.

17. She K, Yan H, Huang J et al. miR-193b availability is antagonized by lnc RNA-SNHG 7 for FAIM 2-induced tumour progression in non-small cell lung cancer. Cell Prolif 2018; 51 (1): e12406. doi: 10.1111/cpr.12406.

18. She K, Huang J, Zhou H et al. lncRNA-SNHG7 promotes the proliferation, migration and invasion and inhibits apoptosis of lung cancer cells by enhancing the FAIM2 expression. Oncol Rep 2016; 36 (5): 2673–2680. doi: 10.3892/or.2016.5105.

19. Qi H, Wen B, Wu Q et al. Long noncoding RNA SNHG7 accelerates prostate cancer proliferation and cycle progression through cyclin D1 by sponging miR-503. Biomed Pharmacother 2018; 102: 326–332. doi: 10.1016/j.bio­pha.2018.03.011.

20. He H-T, Xu M, Kuang Y et al. Biomarker and competing endogenous RNA potential of tumor-specific long noncoding RNA in chromophobe renal cell carcinoma. OncoTargets Ther 2016; 9: 6399–6406. doi: 10.2147/OTT.S116392.

21. Arnold M, Sierra MS, Laversanne M et al. Global patterns and trends in colorectal cancer incidence and mortality. Gut 2017; 66 (4): 683–691. doi: 10.1136/gutjnl-2015-310912.

22. Gupta AK, Brenner DE, Turgeon DK. Early detection of colon cancer. Mol Dia­gn Ther 2008; 12 (2): 77–85. doi: 10.1007/BF03256273.

23. Geisler S, Coller J. RNA in unexpected places: long non-coding RNA functions in diverse cellular contexts. Nat Rev Mol Cell Biol 2013; 14 (11): 699–712. doi: 10.1038/nrm3679.

24. Chen J, Liu S, Hu X. Long non-coding RNAs: crucial regulators of gastrointestinal cancer cell proliferation. Cell Death Discov 2018; 4 (1): 50. doi: 10.1038/s41420-018-0051-8.

25. Rion N, Rüegg MA. lncRNA-encoded peptides: More than translational noise? Cell Res 2017; 27 (5): 604–605. doi: 10.1038/cr.2017.35.

26. Liu Y, Zhang M, Liang L et al. Over-expression of lncRNA DANCR is associated with advanced tumor progression and poor prognosis in patients with colorectal cancer. Int J Clin Exp Pathol 2015; 8 (9): 11480–11484.

27. Zhu Y, Li B, Liu Z et al. Up-regulation of lncRNA SNHG1 indicates poor prognosis and promotes cell proliferation and metastasis of colorectal cancer by activation of the Wnt/b-catenin signaling pathway. Oncotarget 2017; 8 (67): 111715–111727. doi: 10.18632/oncotarget.22903.

28. Tian T, Qiu R, Qiu X. SNHG1 promotes cell proliferation by acting as a sponge of miR-145 in colorectal cancer. Oncotarget 2018; 9 (2): 2128–2139. doi: 10.18632/oncotarget.23255.

29. Qi H, Wang J, Wang F et al. Long non-coding RNA SNHG1 promotes cell proliferation and tumorigenesis in colorectal cancer via Wnt/b-catenin signaling. Pharmazie 2017; 72 (7): 395–401. doi: 10.1691/ph.2017.7463.

30. Sun X, Wang Z, Yuan W. Down-regulated long non-coding RNA SNHG1 inhibits tumor genesis of colorectal carcinoma. Cancer Biomark 2017; 20 (1): 67–73. doi: 10.3233/CBM-170112.

31. Wajant H. The Fas signaling pathway: more than a paradigm. Science 2002; 296 (5573): 1635–1636. doi: 10.1126/science.1071553.

32. Scaffidi C, Fulda S, Srinivasan A et al. Two CD95 (APO-1/Fas) signaling pathways. The EMBO J 1998; 17 (6): 1675–1687. doi: 10.1093/emboj/17.6.1675.

33. Shan Y, Ma J, Pan Y et al. LncRNA SNHG7 sponges miR-216b to promote proliferation and liver metastasis of colorectal cancer through upregulating GALNT1. Cell Death Dis 2018; 9 (7): 722. doi: 10.1038/s41419-018-0759-7.

34. Li Y, Zeng C, Hu J et al. Long non-coding RNA-SNHG7 acts as a target of miR-34a to increase GALNT7 level and regulate PI3K/Akt/mTOR pathway in colorectal cancer progression. J Hematol Oncol 2018; 11 (1): 89. doi: 10.1186/s13045-018-0632-2.

Labels
Paediatric clinical oncology Surgery Clinical oncology

Article was published in

Clinical Oncology


Most read in this issue
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#