#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The Use of Flow Cytometry for Analysis of the Mitochondrial Cell Death


Authors: L. Pekarčíková 1;  L. Knopfová 1;  E. Ondroušková 2;  J. Šmarda 1
Authors‘ workplace: Ústav experimentální bio­logie, Přírodovědecká fakulta MU, Brno 1;  Regionální centrum aplikované molekulární onkologie, Masarykův onkologický ústav, Brno 2
Published in: Klin Onkol 2014; 27(Supplementum): 15-21

Overview

Apoptosis is type I programmed cell death, a process that is essential for development and tissue homeostasis. It is a prevalent form of cell death and it proceeds via two signaling pathways – external (receptor pathway) triggered by death receptors and intrinsic (mitochondrial) apoptotic pathway with major involvement of mitochondria. Mitochondria are important cellular organelles producing energy stored in molecules of adenosine triphosphate that are essential for cell survival. The mitochondrial cell death is characterized by permeabilization of the mitochondrial outer membrane and dissipation of the transmembrane potential. Mitochondria are electronegative organelles and depolarization of the mitochondrial membrane is important for the release of proapoptotic signals. Aberrant control of the mitochondrial cell death might contribute to several diseases including cancer. Mitochondria are also a source of reactive oxygen species, Ca2+ ions and other proteins that affect processes important for the initiation and progression of tumors independently of apoptosis. Current studies focus on research of mitochondrial membrane potential and reactive oxygen species modulating various signaling pathways within the cell, their importance in carcinogenesis, and in treatment of oncological patients. Monitoring of the apoptotic markers, such as the mitochondrial membrane potential (MMP), and the level of reactive oxygen species in samples of oncological patients has a predictive value for the output of treatment protocols.

Key words:
mitochondria –  flow cytometry –  apoptosis –  free radicals –  mitochondrial membrane potential

This work was supported by the European Regional Development Fund and the State Budget of the Czech Republic (RECAMO, CZ.1.05/2.1.00/03.0101) and IntegRECAMO CZ.1.07/2.3.00/20.0097).

The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.

The Editorial Board declares that the manuscript met the ICMJE “uniform requirements” for biomedical papers.

Submitted:
13. 1. 2014

Accepted:
11. 4. 2014


Sources

1. Svod.cz [internetová stránka]. Český národní webový portál epidemiologie nádorů. Masarykova univerzita, Česká republika; [citováno leden 2014]. Dostupný z: http:/ / www.svod.cz.

2. Linkos.cz [internetová stránka]. Česká onkologická společnost ČLS JEP, Česká republika; [aktualizováno 11. srpna 2011; citováno leden 2014]. Dostupné z: http:/ / www.linkos.cz.

3. Hammoudi N, Ahmed KB, Garcia‑ Prieto C et al. Meta­bolic alterations in cancer cells and therapeutic implications. Chin J Cancer 2011; 30(8): 508– 525. doi: 10.5732/ cjc.011.10267.

4. Alvero AB, Montagna MK, Holmberg JC et al. Target­ing the mitochondria activates two independent cell death pathways in ovarian cancer stem cells. Mol Cancer Ther 2011; 10(8): 1385– 1393. doi: 10.1158/ 1535- 7163.MCT‑ 11- 0023.

5. Dong LF, Jameson VJ, Tilly D et al. Mitochondrial targeting of α‑ tocopheryl succinate enhances its pro‑apoptotic efficacy. A new paradigm for effective cancer therapy. Free Radical Biol Med 2011; 50(11): 1546– 1555. doi: 10.1016/ j.freeradbio­med.2011.02.032.

6. Horvitz HR. Genetic control of programmed cell death in the nematode Caenorhabditis elegans. Cancer Res 1999; 59 (7 Suppl): 1701S– 1706S.

7. Vaux DL, Korsmeyer SJ. Cell death in development. Cell 1999; 96(2): 245– 254.

8. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic bio­logical phenomenon with wide‑ ranging implications in tissue kinetics. Br J Cancer 1972; 26(4): 239– 257.

9. Earnshaw WC, Martins LM, Kaufmann SH. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 1999; 68: 383– 424.

10. Thornberry NA, Lazebnik Y. Caspases: enemies within. Science 1998; 281(5381): 1312– 1316.

11. Kerr JF, Winterford CM, Harmon BV. Apoptosis. Its significance in cancer and cancer therapy. Cancer 1994; 73(8): 2013– 2026.

12. Martin SJ, Reutelingsperger CP, McGahon AJ et al. Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl‑ 2 and Abl. J Exp Med 1995; 182(5): 1545– 1556.

13. Cuende E, Alés‑ Martinez JE, Ding L et al. Programmed cell death by bcl‑ 2- dependent and independent mechanisms in B lymphoma cells. The EMBO Journal 1993; 12(4): 1555– 1560.

14. Adams JM, Cory S. The Bcl‑ 2 protein family: arbiters of cell survival. Science 1998; 281(5381): 1322– 1326.

15. Sedlak TW, Oltvai ZN, Yang E et al. Multiple Bcl‑ 2 family members demonstrate selective dimerizations with Bax. Proc Natl Acad Sci USA 1995; 92(17): 7834– 7838.

16. Dyall SD, Brown MT, Johnson PJ. Ancient invasions: from endosymbio­nts to organelles. Science 2004; 304(5668): 253– 257.

17. Green DR, Reed JC. Mitochondria and apoptosis. Science 1998; 281(5381): 1309– 1312.

18. Willis SN, Chen L, Dewson G et al. Proapoptotic Bak is sequestered by Mcl‑ 1 and Bcl‑ xL, but not Bcl‑ 2, until displaced by BH3-only proteins. Genes Dev 2005; 19(11): 1294– 1305.

19. Wolter KG, Hsu YT, Smith CL et al. Movement of Bax from the cytosol to mitochondria during apoptosis. J Cell Biol 1997; 139(5): 1281– 1292.

20. Hsu YT, Wolter KG, Youle RJ. Cytosol‑ to‑ membrane redistribution of Bax and Bcl‑ X(L) during apoptosis. Proc Natl Acad Sci USA 1997; 94(8): 3668– 3672.

21. Lindsten T, Ross AJ, King A et al. The combined functions of proapoptotic Bcl‑ 2 family members bak and bax are essential for normal development of multiple tissues. Mol Cell 2000; 6(6): 1389– 1399.

22. Xiang J, Chao DT, Korsmeyer SJ. BAX‑induced cell death may not require interleukin 1b‑convertingenzyme‑like proteases. Proc Natl Acad Sci USA 1996; 93(25): 14559– 14563.

23. Crompton M. The mitochondrial permeability transition pore and its role in cell death. Biochem J 1999; 341(Pt 2):233– 249.

24. Kroemer G, Dallaporta B, Resche‑ Rigon M. The mitochondrial death/ life regulator in apoptosis and necrosis. Annu Rev Physiol 1998; 60: 619– 642.

25. Gross A, McDonnell JM, Korsmeyer SJ. BCL‑ 2 family members and the mitochondria in apoptosis. Genes Dev 1999; 13(15): 1899– 1911.

26. Lemasters JJ, Nieminen A, Qian T et al. The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochem Biophys Acta 1998; 1366(1– 2): 177– 196.

27. Bernardi P, Scorrano L, Colonna R et al. Mitochondria and cell death: mechanistic aspects and methodological issues. Eur J Biochem 1999; 264(3): 687– 701.

28. Smiley ST, Reers M, Mottola‑ Hrtshorn C et al. Intracel­lular heterogeneity in mitochondrial membrane potentials revealed by a J‑ aggregate‑ forming lipophilic cation JC‑ 1. Proc Natl Acad Sci USA 1991; 88(9): 3671– 3675.

29. Akerman KE, Wikstrom MK. Safranine as a probe of the mitochondrial membrane potential. FEBS Lett 1976; 68(2): 191– 197.

30. Nicholls DG. The regulation of extramitochondrial free calcium ion concentration by rat liver mitochondria. Biochem J 1978; 176(2): 463– 474.

31. LaNoue KF, Strzelecki T, Strzelecka D et al. Regulation of the uncoupling protein in brown adipose tissue. J Biol Chem 1986; 261(1): 298– 305.

32. Emanus RK, Grunwald R, Lemasters JJ. Rhodamine 123 as a probe of transmembrane potential in isolated rat‑liver mitochondria: spectral and metabolic properties. Biochem Biophys Acta 1986; 850(3): 436– 448.

33. Loew LM, Tuft RA, Carrington W et al. Imaging in five dimensions: time‑ dependent membrane potentials in individual mitochondria. Biophys J 1993; 65(6): 2396– 2407.

34. Ehrenberg B, Montana V, Wei MD et al. Membrane potential can be determined in individual cells from the Nernstian distribution of cationic dyes. Biophys J 1988; 53(5): 785– 794.

35. Cossarizza A, Baccarani‑ Contri M, Kalashnikova G et al.A new method for the cytofluorimetric analysis of mitochondrial membrane potential using the J‑ aggregate form­ing lipophilic cation 5,5‘,6,6‘- tetrachloro‑1,1‘,3,3‘- tetraethylbenzimidazolcarbocyanine iodide (JC‑ 1). Biochem Biophys Res Commun 1993; 197(1): 40– 45.

36. Shen K, Ji L, Chen Y et al. Influence of glutathione levels and activity of glutathione‑related enzymes in the brains of tumor‑ bearing mice. Bioscience trends 2011; 5(1): 30– 37.

37. Schafer FQ, Buettner GR. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/ glutathione couple. Free Radical Biol Med 2001; 30(11): 1191– 1212.

38. Polidori MC, Stahl W, Eichler O et al. Profiles of antioxidants in human plasma. Free Radical Biol Med 2001; 30(5): 456– 462.

39. Dudzinski DM, Michel T. Life history of eNOS: partners and pathways. Cardiovasc Res 2007; 75(2): 247– 260.

40. Jian Liu K, Rosenberg GA. Matrix metalloproteinases and free radicals in cerebral ischemia. Free Radical Biol Med 2005; 39(1): 71– 80.

41. Griendling KK, Sorescu D, Lasseue B et al. Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology. Arterioscler Thromb Vasc Biol 2000; 20(10): 2175– 2183.

42. Cuzzocrea S, Riley DP, Caputi AP et al. Antioxidant therapy: a new pharmacological approach in shock, inflammation, and ischemia/ reperfusion injury. Pharmacol Rev 2001; 53(1): 135– 159.

43. Mahelkova G, Korynta J, Moravova A et al. Changes of extracellular matrix of rat cornea after exposure to hypoxia. Physiol Res 2008; 57(1): 73– 80.

44. Singh S, Gupta AK. Nitric oxide: role in tumour bio­logy and iNOS/ NO based anticancer therapies. Cancer Chemother Pharmacol 2011; 67(6): 1211– 1224. doi: 10.1007/ s00280- 011- 1654- 4.

45. Wright DT, Cohn LA, Li H et al. Interactions of oxygen radicals with airway epithelium. Environ Health Perspects 1994; 102 (Suppl 10): 85– 90.

46. Madamanchi NR, Runge MS. Mitochondrial dysfunction in atherosclerosis. Circ Res 2007; 100(4): 460– 473.

47. Cadenas E, Davies KJ. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med 2000; 29(3– 4): 222– 230.

48. St‑ Pierre J, Drori S, Uldry M et al. Suppression of reactive oxygen species and neurodegeneration by the PGC‑ 1 transcriptional coactivators. Cell 2006; 127(2): 397– 408.

49. Barbour JA, Turner N. Mitochondrial stress signaling promotes cellular adaptations. Int J Cell Biol 2014; 2014: 156020.

50. Okamoto K, Kondo‑ Okamoto N. Mitochondria and autophagy: critical interplay between the two homeostats. Biochim Biophys Acta 2012; 1820(5): 595– 600. doi: 10.1016/ j.bbagen.2011.08.001.

51. Pangare M, Makino A. Mitochondrial function in vascular endothelial cell in diabetes. J Smooth Muscle Res 2012; 48(1): 1– 26.

52. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009; 324(5930): 1029– 1033. doi: 10.1126/ science.1160809.

53. Koppenol WH, Bounds PL, Dang CV. Otto Warburg‘scontributions to current concepts of cancer metabolism. Nat Rev Cancer 2011; 11(5): 325– 337. doi: 10.1038/ nrc3038.

54. Wellen KE, Thompson CB. Cellular metabolic stress: considering how cells respond to nutrient excess. Mol Cell 2010; 40(2): 323– 332. doi: 10.1016/ j.molcel.2010.10.004.

55. Christofk HR, Vander Heiden MG, Harris MH et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 2008; 452(7184): 230– 233. doi: 10.1038/ nature06734.

56. Anastasiou D, Poulogiannis G, Asara JM et al. Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science 2011; 334(6060): 1278– 1283. doi: 10.1126/ science.1211485.

57. Hamanaka RB, Chandel NS. Cell bio­logy. Warburg effect and redox balance. Science 2011; 334(6060): 1219– 1220. doi: 10.1126/ science.1215637.

58. Zmijewski JW, Moellering DR, Le Goffe C et al. Oxidized LDL induces mitochondrially associated reactive oxygen/ nitrogen species formation in endothelial cells. Am J Physiol Heart Circ Physiol 2005; 289(2): H852– H861.

59. Landar A, Zmijewski JW, Dickinson DA et al. Interaction of electrophilic lipid oxidation products with mitochondria in endothelial cells and formation of reactive oxygen species. Am J Physiol Heart Circ Physiol 2006; 290(5): H1777– H1787.

60. Choi H, Kim S, Mukhopadhyay P et al. Structural basis of the redox switch in the OxyR transcription factor. Cell 2001; 105(1): 103– 113.

61. Mukhopadhyay P, Rajesh M, Hasko G et al. Simultaneous detection of apoptosis and mitochondrial superoxide production in live cells by flow cytometry and confocal microscopy. Nat Protoc 2007; 2(9): 2295– 2301.

62. Dickinson BC, Chang CJ. A targetable fluorescent probe for imaging hydrogen peroxide in the mitochondria of living cells. J Am Chem Soc 2008; 130(30): 9638– 9639. doi: 10.1021/ ja802355u.

63. Koide Y, Urano Y, Kenmoku S et al. Design and synthesis of fluorescent probes for selective detection of highly reactive oxygen species in mitochondria of living cells. J Am Chem Soc 2007; 129(34): 10324– 10325.

64. Houston MA, Augenlicht LH, Heerdt BG. Intrinsic mitochondrial membrane potential and associated tumor phenotype are independent of MUC1 over‑ expres­sion. PloS One 2011; 6(9): e25207. doi: 10.1371/ journal.pone.0025207.

65. Tait SW, Green DR. Mitochondria and cell signalling. J Cell Sci 2012; 125(Pt 4): 807– 815. doi: 10.1242/ jcs.099234.

Labels
Paediatric clinical oncology Surgery Clinical oncology

Article was published in

Clinical Oncology

Issue Supplementum

2014 Issue Supplementum

Most read in this issue
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#