New Trends in the Study of Protein Glycosylation in Oncological Diseases
Authors:
M. Zahradníková; L. Hernychová; B. Vojtěšek; M. V. Novotný
Authors‘ workplace:
Regionální centrum aplikované molekulární onkologie, Masarykův onkologický ústav, Brno
Published in:
Klin Onkol 2014; 27(Supplementum): 121-128
Overview
Glycomics and glycoproteomics represent relatively new directions in detail analyses of complex biological media. These areas of increasing importance to cancer research complement the more established genomic profiling and proteomics. Glycoproteins are being increasingly recognized as important in cellular interactions and adhesion. Structural alterations of their glycan moieties seem to occur in different cancer conditions. We review current directions in glycomic profiling and glycoproteomic investigations of biological fluids and tissues pertaining to cancer. The used methods rely on capillary separation techniques, mass spectrometry, and the glycan and lectin arrays. They all show considerable promise for new diagnostic and prognostic measurements.
Key words:
glycomics – glycopeptides – cancer – liquid chromatography – mass spectrometry – capillary electrophoresis – glycan profiling – array analysis
This work was supported by the European Regional Development Fund and the State Budget of the Czech Republic (RECAMO, CZ.1.05/2.1.00/03.0101) and by MH CZ – DRO (MMCI, 00209805).
The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.
The Editorial Board declares that the manuscript met the ICMJE “uniform requirements” for biomedical papers.
Submitted:
21. 3. 2014
Accepted:
10. 4. 2014
Sources
1. Hart GW, Copeland RJ. Glycomics hits the big time. Cell 2010; 143(5): 672– 676. doi: 10.1016/ j.cell.2010.11.008.
2. Aub JC, Sanford BH, Cote MN. Studies on reactivity of tumor and normal cells to a wheat agglutin. Proc Natl Acad Sci USA 1965; 54(2): 396– 399.
3. Hakomori S. Glycosylation defining cancer malignancy; new wine in an old bottle. Proc Natl Acad Sci USA 2002; 99(16): 10231– 10233.
4. Kobata A, Amano J. Altered glycosylation of proteins produced by malignant cells, and applications for the diagnosis and immunotherapy of tumors. Immunol Cell Biol 2005; 83(4): 429– 439.
5. Ørntoft TF, Vestergaard EM. Clinical aspects of altered glycosylation of glycoproteins in cancer. Electrophoresis 1999; 20(2): 362– 371.
6. Taniguchi N. Human disease glycomics/ proteome initiative (HGPI). Mol Cell Prot 2008; 7(3): 626– 627.
7. Novotny MV, Alley WR Jr, Mann BF. Analytical glycobiology at high sensitivity: current approaches and directions. Glycoconjugate J 2013; 30(2): 89– 117. doi: 10.1007/ s10719- 012-9444- 8.
8. Novotny MV, Alley WR Jr. Recent trends in analytical and structural glycobiology. Curr Opin Chem Biol 2013; 17(5): 832– 841. doi: 10.1016/ j.cbpa.2013.05.029.
9. National Research Council (US) Committee on Assessing the Importance and Impact of Glycomics and Glycosciences (eds). Transforming glycoscience: a roadmap for the future [monograph on the Internet]. Washington (DC): National Academies Press (US); 2012 [cited 2014 January 17]. Available from: http:/ / www.ncbi.nlm.nih.gov/ books/ NBK109958/ .
10. Hudak JS, Bertozzi CR. New advances inspire a reemergance of glycans in medicine. Chemistry Biology 2014; 21: 16– 37. doi: 10.1016/ j.chembiol.2013.09.010.
11. Kyselova Z, Mechref Y, Al Bataineh M et al. Alterations in the serum glycome due to metastatic prostate cancer. J Proteome Res 2007; 6(5): 1822– 1832.
12. Ressom HW, Varghese RS, Goldman L et al. Analysis of MALDI‑ TOF mass spectrometry data for discovery of peptide and glycan biomarkers of hepatocellular carcinoma. J Proteome Res 2008; 7(2): 603– 610. doi: 10.1021/ pr0705237.
13. Alley WR Jr, Vasseur JA, Goetz JA et al. N‑linked glycan structures and their expressions change in the blood sera of ovarian cancer patients. J Proteome Res 2012; 11(4): 2282– 2300. doi: 10.1021/ pr201070k.
14. Vasseur JA, Goetz JA, Alley WR Jr et al. Smoking and lung cancer‑induced changes in N‑ glycosylation of blood serum proteins. Glycobiology 2012; 22(12): 1684– 1708. doi: 10.1093/ glycob/ cws108.
15. Alley WR Jr, Svoboda M, Goetz JA et al. Glycomic analysis of sera derived from colorectal cancer patients reveals increased fucosylation of highly branched glycans. In press 2014.
16. Hicks MG, Kettner C (eds). Glyco‑ bioinformatics: cracking the sugar code by navigating the glycospace. Frankfurt: Logos‑ Verlag 2012.
17. Novotny MV, Soini HA, Mechref Y. Biochemical individuality reflected in chromatographic, electrophoretic and mass‑ spectrometric profiles. J Chromatogr B 2008; 866(1– 2): 26– 47.
18. Volmers HP, Brädlein S. Natural antibodies and cancer. J Autoimm 2007; 29(4): 295– 302.
19. Bovin N, Obukhova P, Shilova N et al. Repertoire of human natural anti‑glycan immunoglobulins. Do we have auto‑ antibodies? Biochim Biophys Acta 2012; 1820(9): 1373– 1382.
20. Rillahan CD, Paulson JC. Glycan microarrays for decoding glycome. Annu Rev Biochem 2011; 80: 797– 823. doi: 10.1146/ annurev‑ biochem‑ 061809- 152236.
21. Taniguchi N, Honke K, Fukuda M (eds). Handbook of glycosyltransferases and related genes, Tokyo: Springer‑ Verlag 2002.
22. Nairn AV, York WS, Harris K et al. Regulation of glycan structures in animal tissues. Transcript profiling of glycan‑related genes. J Biol Chem 2008; 283(25): 17298– 17313. doi: 10.1074/ jbc.M801964200.
23. Nairn AV, Moremen KW. Glycotranscriptomics. In: Cummings RD, Pierce JM (eds). Handbook of glycomics. New York: Academic Press/ Elsevier 2009: 95– 135.
24. Redelinghuys P, Crocker PR. Glycomics of the immune systems. In: Cummings RD, Pierce JM (eds). Handbook of glycomics. New York: Academic Press/ Elsevier 2009: 237– 261.
25. Kolarich D, Lepenies B, Seeberger PH. Glycomics, glycoproteomics and the immune system. Curr Opin Chem Biol 2012; 16(1– 2): 214– 220. doi: 10.1016/ j.cbpa.2011.12.006.
26. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell 2010; 140(6): 883– 899. doi: 10.1016/ j.cell.2010.01.025.
27. Narimatsu H, Sawaki H, Kuni A et al. A strategy for discovery of cancer glycol‑ biomarkers in serum using newly developed technologies for glycoproteomics. FEBS J 2009; 277(1): 95– 105. doi: 10.1111/ j.1742- 4658.2009.07430.x.
28. Alley WR Jr, Mann BF, Novotny MV. High‑sensitivity analytical approaches for the structural characterization of glycoconjugates. Chem Rev 2013; 113(4): 2668– 2732. doi: 10.1021/ cr3003714.
29. Alley WR Jr, Madera M, Mechref Y et al. Chip‑based reversed‑ phase liquid chromatography‑mass spectrometry of permethylated glycans: a potential methodology for cancer‑ biomarker discovery. Anal Chem 2010; 82(12): 5095– 5106. doi: 10.1021/ ac100131e.
30. Knezevic A, Gornik O, Polasek O et al. Effects of aging, body mass index, plasma lipid profiles, and smoking on human plasma N‑ glycans. Glycobiol 2010; 20(8): 959– 969. doi: 10.1093/ glycob/ cwq051.
31. Lauc G, Essafi A, Huffman JE et al. Genomics meets glycomics – the first GWAS study of human N‑ Glycome identifies HNFIa as a master regulator of plasma protein fucosylation. PLoS Genet 2010; 6(12): e1001256. doi: 10.1371/ journal.pgen.1001256.
32. Kyselova Z, Mechref Y, Kang P et al. Breast cancer diagnosis and prognosis through quantitative measurements of serum glycan profiles. Clin Chem 2008; 54(7): 1166– 1175. doi: 10.1373/ clinchem.2007.087148.
33. Mechref Y, Hussein A, Bekesova S et al. Quantitative serum glycomics of esophageal adenocarcinoma and other esophageal disease onsets. J Proteome Res 2009; 8(6): 2656– 2666. doi: 10.1021/ pr8008385.
34. Kang P, Madera M, Alley WR Jr et al. Glycomic alterations in the highly‑ abundant and lesser‑ abundant blood serum protein fractions for patients diagnosed with hepatocellular carcinoma. Int J Mass Spectrom 2011; 305(2– 3): 185– 198.
35. Tang Z, Varghese RS, Bekesova S et al. Identification of N‑ glycan serum markers associated with hepatocellular carcinoma from mass spectrometry data. J Proteome Res 2010; 9(1): 104– 112. doi: 10.1021/ pr900397n.
36. Mitra I, Alley WR Jr, Goetz JA et al. Comparative profiling of N‑ glycans isolated from serum samples of ovarian cancer patients and analyzed by microchip electrophoresis. J Proteome Res 2013; 12(10): 4490– 4496. doi: 10.1021/ pr400549e.
37. Mann BF, Goetz JA, House MG et al. Glycomic and proteomic profiling of pancreatic cyst fluids identifies hyperfucosylated lactosamines on the N‑linked glycans of overexpressed glycoproteins. Mol Cell Proteomics 2012; 11(7): M111.015792. doi: 10.1074/ mcp.M111.015792.
38. Goetz JA, Mechref Y, Kang P et al. Glycomic profiling of invasive and non‑invasive breast cancer cells. Glycoconj J 2009; 26(2): 117– 131. doi: 10.1007/ s10719- 008- 9170-4.
39. Siddiqui SF, Pawelek J, Handerson T et al. Coexpression of {beta}1,6- N‑ acetylglucosaminyltransferase V glycoprotein substrates defines aggressive breast cancers with poor outcome. Cancer Epidemiol Biomarkers Prev 2005; 14(11 Pt 1): 2517– 2523.
40. Peracaula R, Tabares G, Royle L et al. Altered glycosylation pattern allows the distinction between prostate‑ specific antigen (PSA) from normal and tumor origins. Glycobiology 2003; 13(6): 457– 470.
41. Schietinger A, Philip M, Yoshida BA et al. A mutant chaperone converts a wild‑type protein into a tumor‑ specific antigen. Science 2006; 314(5797): 304– 308.
42. Wei X, Li L. Comparative glycoproteomics: approaches and applications. Brief Funct Genomics Proteomic 2009; 8(2): 104– 113. doi: 10.1093/ bfgp/ eln053.
43. Drake M, Cho W, Li B et al. Sweetening the pot: adding glycosylation to the biomarker discovery equation. Clin Chem 2010; 56(2): 223– 236. doi: 10.1373/ clinchem.2009.
44. Soltermann A, Ossola R, Kilgus‑ Hawelski S et al. N‑ glycoprotein profiling of lung adenocarcinoma pleural effusions by shotgun proteomics. Cancer 2008; 114(2): 124– 133. doi: 10.1002/ cncr.23349.
45. Larkin A, Imperiali B. The expanding horizons of asparagine‑linked glycosylation. Biochemistry 2011; 50(21): 4411– 4426. doi: 10.1021/ bi200346n.
46. Balonova L, Hernychova L, Bilkova Z et al. „Sladký“ svět bakterií: metodické přístupy využívané v analýze bakteriálních glykoproteinů. Vojenské zdravotnické listy 2010; 74(2): 54– 59.
47. Hongsachart P, Huang‑ Liu R, Sinchaikul S et al. Glycoproteomic analysis of WGA‑ bound glycoprotein biomarkers in sera from patients with lung adenocarcinoma. Electrophoresis 2009; 30(7): 1206– 1220. doi: 10.1002/ elps.200800405.
48. Tian Y, Zhang H. Glycoproteomics and clinical applications. Proteomics Clin Appl 2010; 4(2): 124– 132. doi: 10.1002/ prca.200900161.
49. Svoboda M, Mann BF, Goetz JA et al. Examination of glycan profiles from IgG‑ depleted human immunoglobulins facilitated by microscale affinity chromatography. Anal Chem 2012; 84(7): 3269– 3277. doi: 10.1021/ ac203336u.
50. Fukui S, Feizi T, Galustian C et al. Oligosaccharide microarrays for high‑through‑ out detection and specificity assignment of carbohydrate‑ protein interactions. Nat Biotechnol 2002; 20(10): 1011– 1017.
51. Houseman BT, Mrksich M. Carbohydrate arrays for the evaluation of protein binding and enzymatic modification. Chem Biol 2002; 9(4): 443– 454.
52. Fazio F, Bryan MC, Blixt O et al. Synthesis of sugar arrays in microtiter plate. J Am Chem Soc 2002; 124(48): 14397– 14402.
53. Rillahan CD, Paulson JC. Glycan microarrays for decoding the glycome. Annu Rev Biochem 2011; 80: 797– 823. doi: 10.1146/ annurev‑ biochem‑ 061809- 152236.
54. Smith DF, Song X, Cummings RD. Use of glycan microarrays to explore specificity of glycan‑binding proteins. Methods Enzymol 2010; 480: 417– 444. doi: 10.1016/ S0076-6879(10)80033- 3.
55. Liu Y, Palma AS, Feizi T. Carbohydrate microarrays: key developments in glycobiology. Biol Chem 2009; 390(7): 647– 656. doi: 10.1515/ BC.2009.071.
56. Huflejt ME, Vuskovic M, Vasiliu D et al. Anti‑carbohydrate antibodies of normal sera: findings, surprises and challenges. Mol Immunol 2009; 46(15): 3037– 3049. doi: 10.1016/ j.molimm.2009.06.010.
57. Vuskovic MI, Xu H, Bovin NV et al. Processing and analysis of serum antibody binding signals from Printed Glycan Arrays for diagnostic and prognostic applications. Int J Bioinf Res App 2011; 7(4): 402– 426. doi: 10.1504/ IJBRA.2011.043771.
58. Kuno A, Uchiyama N, Koseki‑ Kuno S et al. Evanescent‑ field fluorescence‑ assisted lectin microarray: a new strategy for glycan profiling. Nat Methods 2005; 2(11): 851– 856.
59. Ribeiro JP, Mahal LK. Dot by dot: analyzing the glycome using lectin microarrays. Curr Opin Biol Chem 2013; 17(5): 827– 831. doi: 10.1016/ j.cbpa.2013.06.009.
60. Bird‑ Lieberman EL, Neves AA, Lao‑ Sirieix P et al. Molecular imaging using fluorescent lectin permits rapid endoscopic identification of dysplasia in Barrett’s esophagus. Nat Med 2012: 18(2): 315– 321. doi: 10.1038/ nm.2616.
61. Gaziel‑ Sovran A, Segura MF, Di Micco R et al. MiR‑ 30b/ 30d regulation of GalNAc transferases enhances invasion and immunosuppression during metastasis. Cancer Cell 2011; 20(1): 104– 118. doi: 10.1016/ j.ccr.2011.05.027.
62. Wang Z, Chinoy ZS, Ambre SG et al. A general strategy for the chemoenzymatic synthesis of asymmetrically branched N‑ glycans. Science 2013; 341(6144): 379– 383. doi: 10.1126/ science.1236231.
63. Alley WR Jr, Mann BF, Hruska V et al. Isolation and purification of glycoconjugates from complex biological sources by recycling high‑performance liquid chromatography. Anal Chem 2013; 85(2): 10408– 10416. doi: 10.1021/ ac4023814.
Labels
Paediatric clinical oncology Surgery Clinical oncologyArticle was published in
Clinical Oncology
2014 Issue Supplementum
Most read in this issue
- Protein Expression and Purification
- Methods for Studying Tumor Cell Migration and Invasiveness
- Next Generation Sequencing – Application in Clinical Practice
- Analysis of Protein Using Mass Spectrometry