#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

New trends in immunochemistry


Authors: P. Štern
Authors‘ workplace: Mimoňská 637/16, 190 00 Praha 9
Published in: Klin. Biochem. Metab., 24, 2016, No. 4, p. 164-169

Overview

The educational article deals with some procedures that extended applications of immunochemistry in the last decade. Fluorescence immunochromatography combines advantages of chromatographic methods and immunoassays with fluorophor labels. Flow horizontal detection using a fluorophor such as Alexa 647 or sulfo-rhodamine B (also incorporated in liposomes) is most widely used. Nanoparticles combined with europium ions, silica coated or semiconductor nanocrystals are also used as fluorophors. Immunochromatography in connection with tandem mass spectrometry has been used in research rather than in clinical laboratory practice. For enrichment of determined analyte immunoaffinity chromatography is used. For standardization incorporating stable-isotopes into the specific peptides of interest is applied. Implementing of ultrasensitive methods, such as application of giant electrical magnetoresistive sensor or field-effect transistor technology, is in a pilot stage.

Keywords:
fluorescence immunochromatography, mass spectrometry, giant electrical magnetoresistive sensor, field-effect transistor.


Sources

1. Pyo, D., Yoo, J. New trends in fluorescence immunochromatography. J. Immunoassay Immunochem., 2012, Vol. 33 (1), p. 203–222.

2. Ho, J. A. A., Wauchope, R. D. A strip liposome immunoassay for aflatoxin B1. Anal. Chem., 2002, Vol. 74 (7), p. 1493–1496.

3. Choi, S., Choi, E. Y., Kim, D. J., Kim, T. S., Oh, S. W. A rapid simple measurement of human albumin in whole blood using a fluorescence immunoassay (I). Clin. Chim. Acta, 2004, Vol. 339 (1-2), 147–156.

4. Choi, S., Choi, E. Y., Kim, H. S., Oh, S. W. On-site quantification of human urinary albumin by a fluorescence immunoassay. Clin. Chem., 2004, Vol. 50 (6), p. 1052–1055.

5. Kim, Y. M., Oh, S. W., Joeng, S. Y., Pyo, D. J., Choi, E. Y. Development of an ultrarapid one-step fluorescence immunochromatographic assay system for the quantification of microcystins. Environ. Sci. Technol., 2003, Vol. 39 (9), p. 1899–1904.

6. Ahn, J. S., Choi, S., Jang, S. H., et al. Development of a point-of-care assay system for high-sensitivity C-reactive protein in whole blood. Clin. Chim. Acta, 2003, Vol. 332 (1-2), p. 51–59.

7. Yoo, J., Jung, Y. M., Hahn, J. H., Pyo, D. J. Quantitative analysis of a prostate-specific antigen in serum using fluorescence immunochromatography. J. Immunoassay Immunochem., 2010, Vol. 31 (4), p. 259–265.

8. Kim, K. J., Cho, Y., Choi, E. Y. Development a fluorescence immunochromatographic assay for rapid quantification of beta-hCG in serum sample. Korean J. Obstet. Gynecol., 2003, Vol. 46 (6), p. 1195–1201.

9. Jeong, D. S., Kang, S. H., Choi, M. G., Choi, E. Y. A preliminary study on the development of a fluorescence immunochromatographic assay for the rapid quantification of the thyroid stimulating hormone in serum sample. Korean J. Lab. Med., 2003, Vol. 23 (6), p. 375–381.

10. Khreich, N., Lamourette, P., Lagoutte, B., et al. A fluorescent immunochromatographic test using immunoliposomes for detecting microcystins and nodularins. Anal. Bioanal. Chem., 2010, Vol. 397 (5), p. 1733–1742.

11. Song, X., Knotts, M. Time-resolved luminescent lateral flow assay technology. Anal. Chim. Acta, 2008, Vol. 626 (2), p. 186–192.

12. Xia, X., Xu, Y., Zhao, X., Li, Q. Lateral flow immunoassay using europium chelate-loaded silica nanoparticles as labels. Clin. Chem., 2009, Vol. 55 (1), p. 179–182.

13. Hampl, J., Hall, M., Mufti, N. A., et al. Upconverting phosphor reporters in immunochromatographic assays. Anal. Biochem., 2001, Vol. 288 (2), p. 176–187.

14. Bruchez, M., Moronne, M., Gin, P., Weiss, S., Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science, 1998, Vol. 281 (5385), p. 2013–2016.

15. Li, Z., Wang, Y., Wang, J., Tang, Z., Pounds, J. G., Lin, Y. Rapid and sensitive detection of protein biomarker using a portable fluorescence biosensor based on quantum dots and a lateral flow test strip. Anal. Chem., 2010, Vol. 82 (16), p. 7008–7014.

16. Zou, Z., Dan, D., Jun, W., et al. Quantum dot-based immunochromatographic fluorescent biosensor for biomonitoring trichloropyridinol, a biomarker of exposure to chlorpyrifos. Anal. Chem., 2010, Vol. 82 (12), p. 5125–5133.

17. Zhou, C., Yuan, H., Shen, H. et al. Synthesis of size-tunable photoluminescent aqueous CdSe/ZnS microspheres via a phase transfer method with amphiphilic oligomer and their application for detection of HCG antigen. J. Mater. Chem., 2011, Vol. 21 (20), p. 7393–7400.

18. Hoofnagle, A. N., Wener, M. H. The fundamental flaws of immunoassays and potential solutions using tandem mass spektrometry. J. Immunol. Methods, 2009, Vol. 347(1-2), p. 3–11.

19. Anderson, L., Hunter, C. L. Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Mol. Cell. Proteomics, 2006, Vol. 5 (4), p. 573–588.

20. Annesley, T. M. Ion suppression in mass spectrometry. Clin. Chem., 2003, Vol. 49 (7), p. 1041–1044.

21. Bondar, O. P., Barnidge, D. R., Klee, E. W., Davis, B. J., Klee, G. G. LC-MS/MS quantification of Zn-α2 glycoprotein: a potential serum biomarker for prostate cancer. Clin. Chem., 2007, Vol. 53 (4), p. 673–678.

22. deWilde, A., Sadilkova, K., Sadilek, M., Vasta, V., Hahn, S. H. Tryptic peptide analysis of ceruloplasmin in dried blood spots using liquid chromatography-tandem mass spectrometry: application to newborn screening. Clin. Chem., 2008, Vol. 54(12), p. 1961–1968.

23. Kuhn, E., Wu, J., Karl, J., Liao, H., Zolg, W., Guild, B. Quantification of C-reactive protein in the serum of patients with rheumatoid arthritis using multiple reaction monitoring mass spectrometry and 13C-labeled peptide standards. Proteomics, 2004, Vol. 4 (4), p. 1175–1186.

24. Berna, M. J., Zhen, Y., Watson, D. E., Hale, J. E, Ackermann, B. L. Strategic use of immunoprecipitation and LC/MS/MS for trace-level protein quantification: myosin light chain 1, a biomarker of cardiac necrosis. Anal. Chem., 2007, Vol. 79 (11), p. 4199–4205.

25. Anderson, N. L., Anderson, N. G., Haines, L. R, Hardie, D. B, Olafson, R. W., Pearson, T. W. Mass spectrometric quantitation of peptides and proteins using Stable Isotope Standards and Capture by Anti-Peptide Antibodies (SISCAPA). J. Proteome Res., 2004, Vol. 3 (2), p. 235–244.

26. Parker, C. E., Pearson, T. W., Anderson, N. L., Borchers, C. H. Mass-spectrometry-based clinical proteomics – a review and prospective. Analyst, 2010, Vol. 135 (8), p. 1830–1838.

27. Gundry, R. L., Fu, Q., Jelinek, C. A., Van Eyk, J. E., Cotter, R. J. Investigation of an albumin-enriched fraction of human serum and its albuminome. Proteomics: Clin. Appl., 2007, Vol. 1 (1), p. 73–88.

28. Hoofnagle, A. N., Becker, J. O., Wener, M. H., Heinecke, J. W. Quantification of thyroglobulin, a low-abundance serum protein, by immunoaffinity peptide enrichment and tandem mass spectrometry. Clin. Chem., 2008, Vol. 54 (11), p. 1796–1804.

29. Friedecký, D., Lemr, K. Úvod do hmotnostní spekt-rometrie. Klin. Biochem. Metab., 2012, Vol. 20 (3), p. 152–157.

30. Yassine, H., Borges, C. R., Schaab, M. R., et al. Mass spectrometric immunoassay and multiple reaction monitoring as targeted ms-based quantitative approaches in biomarker development: potential applications to cardiovascular disease and diabetes. Proteomics Clin. Appl., 2013, Vol. 7(7-8), p. 528–540.

31. Gordon, J., Michel, G. Discerning trends in multiplex immunoassay technology with potential for resource-limited settings. Clin. Chem., 2012, Vol. 58 (4), p. 690–698.

32. Hall, D. A., Gaster, R. S., Lin, T., et al. GMR biosensor arrays: a system perspective. Biosens. Bioelectron., 2010, Vol. 25 (9), p. 2051–2057.

33. Dittmer, W. U., de Kievit, P., Prins, M. W. J., Vissers, J. L. M., Mersch, M. E. C., Martens, M. Sensitive and rapid immunoassay for parathyroid hormone using magnetic particle labels and magnetic actuation. J. Immunol. Methods, 2008, Vol. 338 (1-2), p. 40–46.

34. Gong, J. R. Label-free attomolar detection of proteins using integrated nanoelectronic and electrokinetic devices. Small, 2010, Vol. 6 (8), p. 967–973.

35. Patolsky, F, Zheng, G. F, Lieber, C. M. Fabrication of silicon nanowire devices for ultrasensitive, labelfree, real-time detection of biological and chemical species. Nat. Protoc., 2006, Vol. 1 (4), p. 1711–1724.

Labels
Clinical biochemistry Nuclear medicine Nutritive therapist
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#