#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Cell therapy in cardiology: state of the art 2005


Authors: R. Panovský
Authors‘ workplace: LF MU a FN U sv. Anny, Brno ;  I. interní kardioangiologická klinika
Published in: Kardiol Rev Int Med 2006, 8(1-2): 7-18
Category: Editorial

Overview

The article reviews results of recent studies of cell therapy in cardiology. It is focused on using skeletal myoblasts, bone marrow cells and ways for mobilization of stem cells.

Keywords:
stem cells – cell therapy – heart failure


Sources

1. Al Attar N, Carrion C, Ghostine S et al. Long-term (1 year) functional and histological results of autologous skeletal muscle cells transplantation in rat. Cardiovasc Res 2003; 58: 142-148.

2. Henningson CT, Stanislaus MA, Gewirtz AM. Embryonic and adult stem cell therapy. Allergy Clin Immunol 2003; 111(2, Suppl): 745-753.

3. Hutcheson KA, Atkins BZ, Hueman MT et al. Comparison of benefits on myocardial performance of cellular cardiomyoplasty with skeletal myoblasts and fibroblasts. Cell Transplant 2000; 9: 359-368.

4. Kim WG, Park JJ, Chung DH, Na CY. Autologous cardiomyocyte transplantation in an ovine myocardial infarction model. Int J Artif Org 2002; 25: 61-66.

5. Scorsin M, Hagėge A, Vilquin JT et al. Comparison of the effects of fetal cardiomyocytes and skeletal myoblasts transplantation on postinfarction left ventricular function. J Thorac Cardiovasc Surg 2000; 119: 1169-1175.

6. Yoo KJ, Li RK, Weisel RD et al. Autologous smooth muscle cell transplantation improved heart function in dilated cardiomyopathy. Ann Thorac Surg 2000; 70: 859-865.

7. Yoo KJ, Li RK, Weisel RD et al. Smooth muscle cells transplantation is better than heart cells transplantation for improvement of heart function in dilated cardiomyopathy. Yonsei Med J 2002; 43: 296-303.

8. Menasché P, Hagėge AA, Scorsin M et al. Myoblast transplantation for heart failure. Lancet 2001; 357: 279-280.

9. Horackova M, Arora R, Chen R et al. Cell transplantation for treatment of acute myocardial infarction: unique capacity for repair by skeletal muscle satellite cells. Am J Physiol Heart Circ Physiol 2004; 287(4): 1599-1608.

10. Chiu RCJ, Zibaitis A, Kao RL. Cellular cardiomyoplasty: myocardial regeneration with satellite cell implantation. Ann Thorac Surg 1995; 60: 12-18.

11. Murry CE, Wiseman RW, Schwartz SM et al. Skeletal myoblast transplantation for repair of myocardial necrosis. J Clin Invest 1996; 98(11): 2512-2523.

12. Taylor DA, Atkins BZ, Hungspreugs P et al. Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nat Med 1998; 4(8): 929-933.

13. Tambara K, Sakakibara Y, Sakaguchi G et al. Transplanted skeletal myoblasts can fully replace the infarcted myocardium when they survive in the host in large numbers. Circulation 2003; 108(suppl 1): 259-263.

14. Van den Bos EJ, Wagner A, Mahrholdt H et al. Improved efficacy of stem cell labeling for magnetic resonance imaging studies by the use of cationic liposomes. Cell Transplant 2003; 12(7): 743-56.

15. Heng BC, Haider HK, Sim EK et al. Strategies for directing the differentiation of stem cells into the cardiomyogenic lineage in vitro. Cardiovasc Res 2004; 62(1): 34-42.

16. Reinecke H, Murry CE. Transmural replacement of myocardium after skeletal myoblast grafting into the heart. Too much of a good thing? Cardiovasc Pathol 2000; 9: 337-344.

17. Menasche P. Skeletal myoblast for cell therapy. Coronary Artery Disease 2005; 16(2): 105-110.

18. Menasche P, Hagége AA, Vilquin JT et al. Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J Am Coll Cardiol 2003; 41: 1078-1083.

19. Herreros J, Prósper F, Perez A et al. Autologous intramyocardial injection of cultured skeletal muscle-derived stem cells in patients with non-acute myocardial infarction. Eur Heart J 2003; 24: 2012-2020.

20. Zhang FM, Yang Z, Chen Y et al. Clinical cellular cardiomyoplasty: Technical considerations. J Card Surg 2003; 18: 268-273.

21. Kao RL, Zhang F, Yiang ZJ et al. Cellular cardiomyoplasty using autologous satellite cells: from experimental to clinical study. Basic Appl Myol 2003; 13: 23-28.

22. Siminiak T, Kalawski R, Fiszer D et al. Autologous skeletal myoblast transplantation for the treatment of postinfarction myocardial injury: phase I clinical study with 12 months of follow-up. Am Heart J 2004; 148(3): 531-537.

23. Siminiak T, Kalawski R, Jerzykowska O et al. Transplantation of autologous skeletal myoblasts during CABG for myocardial regeneration. Three years follow-up. Eur Heart J 2005; 26(Suppl): 201.

24. Siminiak T, Fiszer D, Jerzykowska O et al. Percutaneous trans-coronary-venous transplantation of autologous skeletal myoblasts in the treatment of post-infarction myocardial contractility impairment: The POZNAN trial. Eur Heart J 2005; 26(12): 1188-1195.

25. Pagani F, DerSimonian R, Zawadska A et al. Autologous skeletal myoblasts transplanted to ischemia damaged myocardium in humans. J Am Coll Cardiol 2003; 41: 879-888.

26. Dib N, Michler RE, Pagani FD et al. Safety and Feasibility of Autologous Myoblast Transplantation in Patients With Ischemic Cardiomyopathy: Four-Year Follow-Up. Circulation 2005; 112: 1748-1755.

27. Smits PC, van Geuns RJM, Poldermans D et al. Catheter-based intramyocardial injection of autologous skeletal myoblasts as a primary treatment of ischemic heart failure. J Am Coll Cardiol 2003; 42: 2063-2069.

28. Ince H, Petzsch M, Renders TC et al. Transcatheter transplantation of autologous skeletal myoblasts in postinfarction patients with severe left ventricular dysfunction. J Endovasc Ther 2004; 11: 695-704.

29. Haider HK, Tan ACK, Aziz S et al. Myoblast transplantation for cardiac repair: a clinical perspective. Molecular Therapy 2004; 9(1): 14-23.

30. Roselle Abraham M, Henrikson CA, Tung L et al. Antiarrhytmic engineering of skeletal myoblasts for cardiac transplantation. Circ Res 2005; 97: 159-167.

31. Brehm M, Zeus T, Strauer BE. Stem cells – clinical application and perspectives. Herz 2002; 27: 611-620.

32. Haider HK, Ashraf M. Bone marrow stem cells in the infarcted heart. Coronary Artery Disease 2005; 16(2): 99-103.

33. Kucia M, Dawn B, Hunt G et al. Cells expressing early cardiac markers reside in the bone marrow and are mobilized into the peripheral blood after myocardial infarction. Circ Res 2004; 95(12): 1191-1199.

34. Yin AH, Miraglia S, Zanjani ED et al. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 1997; 90: 5002-5012.

35. Condorelli G, Borello U, De Angelis L et al. Cardiomyocytes induce endothelial cells to trans-differentiate into cardiac muscle: implications for myocardium regeneration. Proc Natl Acad Sci USA 2001; 98(19): 10733-10738.

36. Tomita S, Li RK, Weisel RD et al. Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 1999; 100(Suppl II): 247-256.

37. Orlic D, Kajstura J, Chimenti S et al. Bone marrow cells regenerate infracted myocardium. Nature 2001; 410: 701-705.

38. Bittira B, Kuang JQ, Al Khaldi A et al. In vitro preprogramming of marrow stromal cells for myocardial regeneration. Ann Thorac Surg 2002; 74: 1154-1159.

39. Jackson KA, Majka SM, Wang H et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 2001; 107: 1395-1402.

40. Toma C, Pittenger MF, Cahill KS et al. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 2002; 105: 93-98.

41. Davani S, Marandin A, Mersin N et al. Mesenchymal progenitor cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a rat cellular cardiomyoplasty model. Circulation 2003; 108(suppl II): 253-258.

42. Chedrawy EG, Wang JS, Hguyen DM et al. Incorporation and integration of implanted myogenic and stem cells into native myocardial fibres: Anatomic basis for functional improvements. J Thoracic Cardiovasc Surg 2002; 124: 584-590.

43. Kocher AA, Schuster MD, Szabolcs MJ et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocytes apoptosis, reduces remodeling and improves cardiac function. Nat Med 2001; 7(4): 430-436.

44. Blau HM, Brazelton TR, Weimann JM. The evolving concept of a stem cell: entity or function? Cell 2001; 105: 829-841.

45. Goodell MA, Jackson KA, Majka SM et al. Stem cell plasticity in muscle and bone marrow. Ann N Y Acad Sci 2001; 938: 208-218.

46. Krause DS, Thiese ND, Collector MI et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 2001; 105: 369-377.

47. Hamano K, Li TS, Kobayashi T et al. Therapeutic angiogenesis induced by local autologous bone marrow cell implantation. Ann Thorac Surg 2002; 73: 1210-1215.

48. Schwartz Y, Kornowski R. Progenitor and embryonic stem cell transplantation for myocardial angiogenesis and functional and functional restoration. Eur Heart J 2003; 24: 404-411.

49. Kamihata H, Matsubara H, Nishiue T et al. Improvement of collateral perfusion and regional function by implantation of peripheral blood mononuclear cells into ischemic hibernating myocardium. Arterioscler Thromb Vasc Biol 2002; 22: 1804-1810.

50. Sakai T, Li RK, Weisel RD et al. Autologous heart cell transplantation improves cardiac function after myocardial injury. Ann Thorac Surg 1999; 68: 1074-2081.

51. Tomita S, Mickle DA, Weisel RD et al. Improved heart function with myogenesis and angiogenesis after autologous porcine bone marrow stromal cell transplantation. J Thorac Cardiovasc Surg 2002; 123: 1132-1140.

52. Kawamoto A, Gwon HC, Iwaguro H et al. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation 2001; 103: 634-637.

53. Fuchs S, Baffour R, Zhou Y et al. Transendocardial delivery of autologous bone marrow enhances collateral perfusion and regional function in pigs with chronic experimental myocardial ischemia. J Am Coll Cardiol 2001; 37: 1726-1732.

54. Stern DM, Hess DC, Borlongan CV. Healing a broken heart with stem cells. Cell Transplantation 2004; 13(7-8): 725-727.

55. Hamano K, Nishida M, Hirata K et al. Local implantation of autologous bone marrow cells for therapeutic angiogenesis in patients with ischemic heart disease. Clinical trial and preliminary results. Jpn Circ J 2001; 65: 845-847.

56. Fuchs S, Satler LF, Kornowski R et al. Catheter-based autologous bone marrow myocardial injection in no-option patients with advanced coronary artery disease. A feasibility study. J Am Coll Cardiol 2003; 41(10): 1721-1724.

57. Perin EC, Dohmann HFR, Borojevic R et al. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 2003; 107: 2294-2302.

58. Silva SA, Dohmann HFR, Perin EC et al. Immediate and short-term safety of catheter-based autologous bone marrow mononuclear cell implantation in patients with severe ischaemic heart failure. Eur J Heart Failure 2003; Suppl 2(1): 137-138 (abstr).

59. Perin EC, Dohmann HFR, Borojevic R et al. Improved exercise capacity and ischemia 6 and 12 months after transendocardial injection of autologous bone marrow mononuclear cells for ischemic cardiomyopathy. Circulation 2004; 110(Suppl II): 213-218.

60. Tse HF, Kwong YL, Chan JKF et al. Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation. Lancet 2003; 361: 47-49.

61. Beeres SLMA, Zeppenfeld K, Bax JJ et al. Intramyocardial injection of autologous bone marrow mononuclear cells in no-option patients with chronic ischaemia is safe, increase quality of life and improves left ventricular ejection fraction. Eur Heart J 2005; 26(Suppl): 663 (abstr).

62. Stamm C, Westphal B, Kleine HD et al. Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet 2003; 361: 45-46.

63. Galiñanes M, Loubani M, Davies J et al. Autotransplantation of unmanipulated bone marrow into scarred myocardium is safe and enhances cardiac function in humans. Cell Transplant 2004; 13: 7-13.

64. Strauer BE, Brehm M, Zeus T et al. Intracoronare, humane autologe Stammzelltransplantation zur Myokardregeneration nach Herzinfarkt. Dtsch Med Wschr 2001; 126: 932-938.

65. Strauer BE, Brehm M, Zeus T et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 2002; 106: 1913-1918.

66. Brehm M, Zeus T, Strauer BE. Stem cells – clinical application and perspectives. Herz 2002; 27: 611-620.

67. Koestering M, Brehm M, Zeus T et al. Regeneration of heart function in chronic coronary heart disease with chronic myocardial infarction: controlled study with intracoronary autologous mononuclear bone marrow cell transplantation. Eur Heart J 2005; 26(Suppl): 532 (abstr).

68. Brehm M, Koestering M, Zeus T et al. Improvement of heart function in chronic coronary heart disease with chronic myocardial infarction: controlled study with intracoronary autologous mononuclear bone marrow cell transplantation (IACT-study). Circulation 2005; 111(13): 1721.

69. Chen SL, Fang WW, Ye F et al. Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol 2004; 94: 82-95.

70. Fernández-Avilés F, San Román JA, García-Frade J et al. Experimental and clinical regenerative capability of human bone marrow cell after myocardial infarction. Circ Res 2004; 95: 742-748.

71. Ruan W, Pan CZ, Huang GQ et al. Assessment of left ventricular segmental function after autologous bone marrow stem cells transplantation in patients with acute myocardial infarction by tissue tracking and strain imaging. Chin Med J 2005; 118(14): 1175-1181.

72. Grajek S, Popiel M, Breborowicz P et al. Improvement of left ventricle function (LVP) in patients with Ami after infusion of bone marrow stem cells (BMSC). Eur Heart J 2005; 26(Suppl): 318 (abstr).

73. Vanderheyden M, Mansour S, Vandekerckhove B et al. Intracoronary injection of enriched CD133+ bone marrow cells promotes cardiac recovery after recent myocardial infarction. Eur Heart J 2005; 26(Suppl): 686 (abstr).

74. Assmus B, Schächinger V, Teupe C et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation 2002; 106: 3009-3017.

75. Britten MB, Abolmaali ND, Assmus B et al. Infarct remodeling after intracoronary progenitor cell treatment in patients with acute myocardial infarction (TOPCARE-AMI): Mechanistic insights from serial contrast-enhanced magnetic resonance imaging. Circulation 2003; 108(18): 2212-2218.

76. Schächinger V, Assmuss B, Britten MB et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction. Final one-year results of the TOPCARE-AMI trial. J Am Coll Cardiol 2004; 44: 1690-1699.

77. Schächinger V et al. REPAIR-AMI: Reinfusion of enriched progenitor cells and infarct remodelling in acute myocardial infarction. AHA Scientific Sessions, Dallas, 13.-16. 11. 2005. (abstr).

78. Bartunek J, Vanderheyden M, Vandekerckhove B et al. Intracoronary Injection of CD133-Positive Enriched Bone Marrow Progenitor Cells Promotes Cardiac Recovery After Recent Myocardial Infarction: Feasibility and Safety. Circulation 2005; 112(Suppl I): 178-183.

79. Mansour S, Vanderheyden M, Wijns W et al. Effects of intracoronary administration of enriched haematopoietic bone marrow stem cells on in-stent restenosis & progression of coronary atherosclerosis in patients with recent myocardial infarction. Eur Heart J 2005; 26(Suppl): 122 (abstr).

80. Sanz R, Villa A, Pena G et al. Rate of in-stent restenosis is low in acute myocardial infarction after intracoronary bone marrow stem cells transplantation. Eur Heart J 2005; 26(Suppl.): 152 (abstr).

81. Wollert KC, Meyer GP, Lotz J et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomized controlled clinical trial. Lancet 2004; 363: 141-148.

82. Erbs S, Linke A, Adams V et al. Transplantation of blood-derived progenitor cells after recanalization of chronic coronary artery occlusion. First randomized and placebo-controlled study. Circ Res 2005; 97: 756-762.

83. Ozbaran M, Omay SB, Nalbantgil S et al. Autologous peripheral stem cell transplantation in patients with congestive heart failure due to ischemic heart disease. Eur J Cardiothorac Surg 2004; 25: 342-350.

84. Pěnička M, Widimský P, Kobylka P et al. Transplantace autologních kmenových buněk kostní dřeně po akutním infarktu myokardu, způsobeném uzávěrem kmene levé věnčité tepny. Cor Vasa 2003; 45(9): 465-468.

85. Meluzín J, Groch L, Janoušek S et al. Autologous transplantation of bone marrow cells in patients with acute myocardial infarction. The effect of the number of transplanted cells on the reduction of infarct size. Eur Heart J 2005; 26(Suppl): 220 (abstr).

86. Meluzín J, Mayer J, Groch L et al. Autologní transplantace dřeňových buněk u nemocného s akutním infarktem myokardu. Cor Vasa 2004; 46(8): 384-388.

87. Kamínek M, Meluzín J, Groch L et al. Úprava infarktového ložiska autologní transplantací mononukleárních buněk kostní dřeně: role kvantitativního Tc-99m-MIBI SPECT a F-18-FDG PET při monitorování léčby. Cor Vasa 2005; 47(5): 203-207.

88. Shintani S, Murohara T, Ikeda H et al. Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation 2001; 103: 2776-2779.

89. Leone AM, Rutella S, Bonanno G et al. Mobilization of bone marrow-derived stem cells after myocardial infarction and left ventricular function. Eur Heart J 2005; 26(12): 1196-204.

90. Laflamme MA, Myerson D, Saffitz JE et al. Evidence for cardiomyocyte repopulation by extracardiac progenitors in transplanted human hearts Circ Res 2002; 90: 634-640.

91. Quaini F, Urbanek K, Beltrami AP et al. Chimerism of the transplanted heart. N Engl J Med 2002; 346(1): 5-15.

92. Haider HK, Ashraf M. Bone marrow stem cells in the infarcted heart. Coron Artery Dis 2005; 16(2): 99-103.

93. Laterveer L, Lindley IJ, Hamilton MS et al. Interleukin-8 induces rapid mobilization of hematopoietic stem cells with radioprotective capacity and long-term myelolymphoid repopulating ability. Blood 1995; 85: 2269-2275.

94. He T, Peterson TE, Katusic ZS. Paracrine mitogenic effect of human endothelial progenitor cells: Role of interleukin-8. Am J Physiol Heart Circ Physiol 2005; 289: 968-972.

95. Seiler C, Pohl T, Wustmann K et al. Promotion of collateral growth by granulocyte-macrophage colony stimulating factor in patients with coronary artery disease. A randomized, double blind, placebo-controlled study. Circulation 2001; 104: 2012-2017.

96. Edwards RG. Stem cells today: B1. Bone marrow stem cells. Reproductive Biomedicine Online 2004; 9(5): 541-583.

97. Li X, Tjwa M, Moons L et al. Revascularization of ischemic tissues by PDGF-CC via effects on endothelial cells and their progenitors. J Clin Invest 2005; 115(1): 118-127.

98. Li TS, Hayashi M, Ito H et al. Regeneration of infarcted myocardium by intramyocardial implantation of ex vivo transforming growth factor-[beta]-preprogrammed bone marrow stem cells. Circulation 2005; 111(19): 2438-2445.

99. Azarnoush K, Maurel A, Sebbah L et al. Enhancement of the functional benefits of skeletal myoblast transplantation by means of coadministration of hypoxia-inducible factor 1a. J Thorac Cardiovasc Surg 2005; 130(1): 173-179.

100. Abbott JD, Huang Y, Liu D et al. Stromal cell-derived factor-1α plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation 2004; 110(21): 3300-3305.

101. Vasa M, Fichtlscherer S, Adler K et al. Increase in circulating endothelial progenitor cells by statin therapy in patients with stable coronary artery disease. Circulation 2001; 103: 2885-2890.

102. Llevadot J, Murasawa S, Kureischi Y et al. HMG-CoA reductase inhibitor mobilizes bone marrow-derived endothelial progenitor cells. J Clin Invest 2001; 108: 399-405.

103. Strehlow K, Werner N, Berweiler J et al. Estrogen increases bone-marrow derived endothelial progenitor cell production and diminishes neointima formation. Circulation 2003; 107: 3059-3065.

104. Magnusson PU, Ronca R, Dell'Era P et al. Fibroblast growth factor receptor-1 expression is required for hematopoietic but not endothelial cell development. Arterioscler Thromb Vasc Biol 2005; 25(5): 944-949.

105. Leong-Poi H, Christiansen J, Heppner P et al. Assessment of endogenous and therapeutic arteriogenesis by contrast ultrasound molecular imaging of integrin expression. Circulation 2005; 111(24): 3248-3254.

106. Losordo DW, Vale PR, Symes JF et al. Gene therapy for myocardial angiogenesis. Initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia. Circulation 1998; 98: 2800-2804.

107. Tio RA, Tkebuchava T, Scheuermann TH et al. Intramyocardial gene therapy with naked DNA encoding vascular endothelial growth factor improves collateral flow to ischemic myocardium. Hum Gene Ther 1999; 10: 2953-2960.

108. Lee RJ, Springer ML, Blanco-Bose WE et al. VEGF gene delivery to the myocardium. Deleterious effect of upregulated expression. Circulation 2000; 102: 898-901.

109. Linke A, Muller P, Nurzynska D et al. Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. Proc Natl Acad Sci USA 2005; 102(25): 8966-8971.

110. Miyagawa S, Sawa Y, Taketani S et al. Myocardial regeneration therapy for heart failure: hepatocyte growth factor enhances the effect of cellular cardiomyoplasty. Circulation 2002; 105: 2556-2561.

111. Kondo I, Ohmori K, Oshita A et al. Treatment of acute myocardial infarction by hepatocyte growth factor gene transfer. The first demonstration of myocardial transfer of a functional gene using ultrasonic microbubble destruction. J Am Coll Cardiol 2004; 44: 644-653.

112. Tambara K, Premaratne GU, Sakaguchi G et al. Administration of control-released hepatocyte growth factor enhances the efficacy of skeletal myoblast transplantation in rat infarcted hearts by greatly increasing both quantity and quality of the graft. Circulation 2005; 112(Suppl I)]: 129-134.

113. Sakai T, Ling Y, Payne TR, Huard J. The use of ex vivo gene transfer based on muscle-derived stem cells for cardiovascular medicine. Trends Cardiovasc Med 2002; 12: 115-120.

114. Suzuki K, Murtuza B, Smolenski RT et al. Cell transplantation for the treatment of acute myocardial infarction using vascular endothelial growth factor-expressing skeletal myoblasts. Circulation 2001; 104(Suppl I): 207-212.

115. Yau TM, Fung K, Weisel RD et al. Enhanced myocardial angiogenesis by gene transfer with transplanted cells. Circulation 2001; 104(Suppl I): 218-222.

116. Losordo DW, Vale PR, Hendel RC et al. Phase ½ placebo-controlled, double-blind, dose escalating trial of myocardial vascular endothelial growth factor 2 gene transfer by catheter delivery in patients with chronic myocardial ischemia. Circulation 2002; 105: 1012-2018.

117. Minatoguchi S, Takemura G, Chen XH et al. Acceleration of the healing process and myocardial regeneration may be important as a mechanism of improvement of cardiac function and remodeling by post infarction granulocyte colony-stimulating factor treatment. Circulation 2004; 109: 2572-2580.

118. Orlic D, Kajstura J, Chimenti S et al. Mobilized bone marrow cells repair the infracted heart, improving function and survival. Proc Natl Acad Sci USA 2001; 98(18): 10344-10349.

119. Hattori K, Heissig B, Tashiro K et al. Plasma elevation of stromal-derived factor-1 induces mobilization of mature and immature hematopoietic progenitor and stem cells. Blood 2001; 97: 3354-3360.

120. Petit I, Szyper-Kravitz M, Nagler A et al. G-CSF induces stem cell mobilization by decreasing BM SDF-1 and up-regulating CXCR4. Nat Immunol 2002; 3: 687-694.

121. Tang YL, Qian K, Zhang YC et al. Mobilizing of haematopoietic stem cells to ischemic myocardium by plasmid mediated stromal-cell-derived factor-1α (SDF-1 α) treatment. Regul Pept 2005; 125: 1-8.

122. Askari A, Unzek S, Popovic ZB et al. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet 2003; 362: 697-703.

123. Jo DY, Hwang JH, Kim JM et al. Human bone marrow endothelial cells elaborate non-stromal-cell-derived factor-1 (SDF-1)-dependent chemoattraction and SDF-1-dependent transmigration of haematopoietic progenitors. Br J Haematol 2003; 121(4): 649-652.

124. Pillarisetti K, Gupta SK. Cloning and relative expression analysis of rat stromal cell derived factor-1 (SDF-1): SDF-1 alpha mRNA is selectively induced in rat model of myocardial infarction. Inflammation 2001; 25(5): 293-300.

125. Ma J, Ge J, Zhang S et al. Time course of myocardial stromal cell–derived factor 1 expression and beneficial effects of intravenously administered bone marrow stem cells in rats with experimental myocardial infarction. Basic Res Cardiol 2005; 100(3): 217-223.

126. Yan W-Q, Briddell R, Hartley C et al. Mobilization of long-term hematopoietic reconstituting cells in mice by the combination of stem cell factor plus granulocyte colony-stimulating factor. Blood 1994; 84: 795-799.

127. Sesti C, Hale SL, Lutzko C, Kloner RA. Granulocyte colony-stimulating factor and stem cell factor improve contractile reserve of the infarcted left ventricle independent of restoring muscle mass. J Am Coll Cardiol 2005; 46(9): 1662-1669.

128. Norol F, Merlet P, Isnard R et al. Influence of mobilized stem cells on myocardial infarct repair in a nonhuman primate model. Blood 2003; 102: 4361-4368.

129. Rosengart TK, Lee LY, Patel SR et al. Angiogenesis gene therapy: phase I assessment of direct intramyocardial administration of an adenovirus vector expressing VEGF121 cDNA to individuals with clinically significant severe coronary artery disease. Circulation 1999; 100: 468-474.

130. Symes JF, Losordo DW, Vale PR et al. Gene therapy with vascular endothelial growth factor for inoperable coronary artery disease. Ann Thor Surg 1999; 68: 830-837.

131. Vale PR, Losordo DW, Milliken CE et al. Randomized, single-blind, placebo-controlled pilot study of catheter-based myocardial gene transfer for therapeutic angiogenesis using left ventricular electromechanical mapping in patients with chronic myocardial ischemia. Circulation 2001; 103: 2138-2143.

132. Kuethe F, Figulla HR, Voth M et al. Mobilisation von Stammzellen durch den Granulozyten-Kolonie stimulierenden Faktor zur Regeneration myokardialen Gewebes nach Herzinfarkt. Dtsch Med Wochenschr 2004; 129: 424-428.

133. Leone AM, Garramone B, Giannico MB et al. Safety and potential efficacy of granulocyte-colony stimulating factor in the acute myocardial infarction (the Rigenera study). Eur Heart J 2005; 26(Suppl.): 531 (abstr).

134. Gutersohn A, Duehrseln U, Huettmann A et al. Stem cell therapy increases exercise tolerance in patients with heart failure. Eur Heart J 2005; 26(Suppl): 319 (abstr).

135. Belenkov IuN, Ageev FT, Mareev Vlu et al. Mobilization of bone marrow stem cells in the management of patients with heart failure: protocol and first results of ROT FRONT trial. Kardiologiia 2003; 43: 7-12.

136. Kang HJ, Kim HS, Zhang SY et al. Effects of intracoronary infusion of peripheral blood stem-cells mobilised with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC cell randomised clinical trial. Lancet 2004; 363: 751-756.

137. Ince H, Petzsch M, Kleine DH et al. Preservation from left ventricular remodeling by front-integrated revascularization and stem cell liberation in evolving acute myocardial infarction by use of granulocyte-colony-stimulating factor (FIRSTLINE-AMI) Trial. Circulation 2005; 112: 3097-3106.

138. Ince H, Petzsch M, Kleine DH et al. Prevention of Left Ventricular Remodeling With Granulocyte Colony-Stimulating Factor After Acute Myocardial Infarction: Final 1-year Results of the Front-Integrated Revascularization and Stem Cell Liberation in Evolving Acute Myocardial Infarction by Granulocyte Colony-Stimulating Factor (FIRSTLINE-AMI) Trial. Circulation 2005; 112(Suppl I): 73-80.

139. Yoon YS, Johnson IA, Park JS et al. Therapeutic myocardial angiogenesis with vascular endothelial growth factors. Mol Cell Biochem 2004; 264: 63-74.

140. Askari A, Unzek S, Goldman CK et al. Cellular, but not direct, adenoviral delivery of vascular endothelial growth factor results in improved left ventricular function and neovascularization in dilated ischemic cardiomyopathy. J Am Coll Cardiol 2004; 43(10): 1908-1914.

141. Celleti FL, Waugh JM, Amabile PG et al. Vascular endothelial growth factor enhances atherosclerotic plaque progression. Nat Med 2001; 7: 425-429.

142. Gyöngyösi M, Khorsand A, Zamini S et al. NOGA-guided analysis of regional myocardial perfusion abnormalities treated with intramyocardial injections of plasmid encoding vascular endothelial growth factor A-165 in patients with chronic myocardial ischemia: subanalysis of the EUROINJECT-ONE multicenter double-blind randomized study. Circulation 2005; 112(Suppl I): 157-165.

143. Kastrup J, Jørgensen E, Rück A et al. Direct intramyocardial plasmid vascular endothelial growth factor-A165 gene therapy in patients with stable severe angina pectoris: A randomized double-blind placebo-controlled study: The Euroinject One Trial. J Am Coll Cardiol 2005; 45(7): 982-988.

144. Hedman M, Hartikainen J, Syvanne M et al. Safety and feasibility of catheter-based local intracoronary vascular endothelial growth factor gene transfer in the prevention of postangioplasty and in-stent restenosis and in the treatment of chronic myocardial ischemia: phase II results of the Kuopio angiogenesis trial (KAT). Circulation 2003; 107: 2677-2683.

145. Henry TD, Annex BH, McKendall GR et al. The VIVA trial: Vascular endothelial growth factor in ischemia or vascular angiogenesis. Circulation 2003; 107: 1359-1365.

146. Giordano FJ, Ping P, McKirnan MD et al. Intracoronary gene transfer of fibroblast growth factor-5 increases blood flow and contractile function in ischemic region of the heart. Nat Med 1996; 2: 534-539.

147. Ueno H, Li JJ, Masuda S et al. Adenovirus-mediated expression of secreted form of basic fibroblast growth factor (FGF-2) induces cellular proliferation and angiogenesis in vivo. Arterioscler Thromb Vasc Biol 1997; 17: 2453-2460.

148. Nakajima H, Sakakibara Y, Tambara K et al. Therapeutic angiogenesis by the controlled release of basic fibroblast growth factor for ischemic limb and heart injury: toward safety and minimal invasiveness. J Artif Organs 2004; 7: 58-61.

149. Rosenblatt-Velin N, Lepore MG, Cartoni C et al. FGF-2 controls the differentiation of resident cardiac precursors into functional cardiomyocytes. J Clin Invest 2005; 115(7): 1724-1733.

150. Laham RJ, Sellke FW, Edelman ER et al. Local perivascular delivery of basic fibroblast growth factor in patients undergoing coronary bypass surgery: results of phase I randomized double blind, placebo-controlled trial. Circulation 1999; 100: 1865-1871.

151. Grines CL, Watkins MW, Helmer G et al. Angiogenic gene therapy (AGENT) trial in patients with stable angina pectoris. Circulation 2002; 105: 1291-1297.

152. Grines CL, Watkins MW, Mahmarian J et al. A randomized double-blind placebo controlled trial of Ad5FGF-4 gene therapy and its effect on myocardial perfusion in patients with stable angina. J Am Coll Cardiol 2003; 42: 1339-1347.

153. Simons M, Annex BH, Laham RJ et al. Pharmacological treatment of coronary artery disease with recombinant fibroblast growth factor-2: double-blind, randomized, controlled clinical trial. Circulation 2002; 105: 788-793.

154. Vandervelde S, Van Luyn MJA, Tio RA, Harmsen MC. Signaling factors in stem cell-mediated repair of infarcted myocardium. J Mol Cell Cardiol 2005; 39(2): 363-376.

155. Yeh ETH, Zhang S, Wu HD et al. Transdifferentiation of human peripheral blood CD34+ - enriched cell population into cardiomyocytes, endothelial cells and smooth muscle cells in vivo. Circulation 2003; 108: 2070-2073.

156. Xu W, Zhang X, Qian H et al. Mesenchymal stem cells from adult human bone marrow differentiate into a cardiomyocyte phenotype in vitro. Exp Biol Med 2004; 229: 623-631.

157. Kim YH. Intramyocardial transplantation of circulating CD34+ cells: source of stem cells for myocardial regeneration. J Korean Med Sci 2003; 18(6): 797-803.

158. Shim WS, Jiang S, Wong P et al. Ex vivo differentiation of human adult bone marrow stem cells into cardiomyocyte-like cells. Biochem Biophys Res Commun 2004; 324(2): 481-8.

159. Piao H, Youn TJ, Kwon JS et al. Effects of bone marrow derived mesenchymal stem cells transplantation in acutely infarcting myocardium. Eur J Heart Failure 2005; 7(5): 730-738.

160. Murasawa S, Kawamoto A, Horii M et al. Niche-dependent translineage commitment of endothelial progenitor cells, not cell fusion in general, into myocardial lineage cells. Arterioscler Thromb Vasc Biol 2005; 25(7): 1388-1394.

161. Wagers AJ, Sherwood RI, Christensen JL, Weissman IL. Little evidence for developmental plasticity of adult hematopoietic stem cells. Science 2002; 297: 2256-2259.

162. Murry CE, Soonpaa MH, Reinecke H et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 2004; 428: 664-668.

163. Balsam LB, Wagers AJ, Christensen JL et al. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 2004; 428: 668-673.

164. Limbourg FP, Ringes-Lichtenberg S, Schaefer A et al. Haematopoietic stem cells improve cardiac function after infarction without permanent cardiac engraftment. Eur J Heart Failure 2005; 7(5): 722-729.

165. Ying QL, Nichols J, Evans EP, Smith AG. Changing potency by spontaneous fusion. Nature 2002; 416: 545-548.

166. Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM et al. Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 2003; 425: 968-973.

167. Shi D, Reinecke H, Murry CE, Torok-Storb B. Myogenic fusion of human bone marrow stromal cells, but not hematopoietic cells. Blood 2004; 104(1): 290-294.

168. Nygren JM, Jovinge S, Breitbach M et al. Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat Med 2004; 10: 494-501.

169. Oh H, Bradfute SB, Gallardo TD et al. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci 2003; 100(21): 12313-12318.

170. Zhang S, Wang D, Estrov Z et al. Both cell fusion and transdifferentiation account for the transformation of human peripheral blood CD34-positive cells into cardiomyocytes in vivo. Circulation 2004; 110(25): 3803-3807.

171. Asahara T, Murohara T, Sullivan A et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997; 275: 964-967.

172. Behfar A, Zingman LV, Hodgson DM et al. Stem cell differentiation requires a paracrine pathway in the heart. FASEB J 2002; 16: 1558-1566.

173. Ziegelhoefffer T, Fernandez B, Kostin S et al. Bone marrow-derivated cells do not incorporate into adult growing vasculature. Circ res 2004; 94: 230-238.

174. Heil M, Ziegelhoeffer T, Mees B, Schaper W. A different outlook on the role of bone marrow stem cells in vascular growth: bone marrow delivers software not hardware. Circ Res 2004; 94: 573-574.

175. Yoshioka T, Ageyama N, Shibata H et al. Repair of infarcted myocardium mediated by transplanted bone marrow-derived CD34+ stem cells in a nonhuman primate model. Stem Cells 2005; 23(3): 355-364.

176. Fukuhara S, Tomita S, Yamashiro S et al. Direct cell-cell interaction of cardiomyocytes is key for bone marrow stromal cells to go into cardiac lineage in vitro. J Thorac Cardiovasc Surg 2003; 125: 1470-1480.

177. Lindsay AC. Halcox JP. Stem cells as future therapy in cardiology. Hospital Medicine 2005; 66(4): 215-220.

178. Wang JS, Shum-Tim D, Chedrawy E et al. The coronary delivery of marrow stromal cells for myocardial regeneration: pathophysiological and therapeutic implication. J Thorac Cardiovasc Surg 2001; 122: 699-705.

179. Rangappa A, Fen C, Lee EH et al. Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes. Ann Thorac Surg 2003; 75: 775-779.

180. Makino S, Fukuda K, Miyoshi S et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 1999; 103: 697-705.

181. Shim W, Wong P. Stem cell cardiomyoplasty: State-of-the-art. Ann Acad Med Singapore 2004; 33(4): 451-460.

182. Suarez de Lezo J, Romero M, Torres A et al. Regeneration versus left-ventricular function recovery after revascularised acute anterior wall myocardial infarction. A randomised study. Eur Heart J 2005; 26(Suppl): 318 (abstr).

183. Planat-Bernard V, Silvestre JS, Cousin B et al. Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation 2004; 109: 656-663.

184. Rehman J, Traktuev D, Li J et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 2004; 109: 1292-1298.

185. Valina CM, Pinkernell, Luka T et al. Intracoronary transplantation of cells isolated from subcutaneous fat tissue or bone marrow into an acute myocardial infarction model in swine shows similar improvement of LV function. Eur Heart J 2005; 26(Suppl): 687 (abstr).

186. Beltrami AP, Urbanek K, Kajstura J et al. Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med 2001; 344(23): 1750-1757.

187. Nadal-Ginard B, Kajstura J, Leri A, Anversa P. Myocyte death, growth, and regeneration in cardiac hypertrophy and failure. Circ Res 2003; 92(2): 139-150.

188. Wilenski RL, Freyman T, Polin GM et al. A comparison of 3 methods of mesenchymal stem cell delivery following transmural myocardial infarction in a porcine model. Eur Heart J 2005; 26(Suppl): 219 (abstr).

189. Li RK, Mickle DAG, Weisel RD et al. Optimal time for cardiomyocyte transplantation to maximize myocardial function after left ventricular injury. Ann Thorac Surg 2001; 72: 1957-1963.

190. Ott HC, McCue J, Taylor DA. Cell–based cardiovascular repair. Basic Res Cardiol 2005; 100(6): 504-517.

191. Atkins BZ. Results of cellular therapy for ischemic myocardial dysfunction. Minerva Cardioangiol 2002; 50: 333-341.

192. Thomson RB, Emani SM, Davis BH et al. Comparison of intracardiac cell transplantation: autologous skeletal myoblasts versus bone marrow cells. Circulation 2003; 108(Suppl II): 264-271.

193. Ott HC, Bonaros N, Marksteiner R et al. Combined transplantation of skeletal myoblasts and bone marrow stem cells for myocardial repair in rats. Eur J Cardiothorac Surg 2004; 25: 627-634.

194. Agbulut O, Vandervelde S, Al Attar N et al. Comparison of human skeletal myoblasts and bone marrow-derived CD133+ progenitors for the repair of infarcted myocardium. J Am Coll Cardiol 2004; 44(2): 458-463.

195. Souza LC, Carvalho KA, Rebelatto C et al. Combined transplantation of skeletal myoblasts and mesenchymal cells (cocultivation) in ventricular dysfunction after myocardial infarction. Arquivos Brasileiros de Cardiologia 2004; 83(4): 288-299.

196. Memon IA, Sawa Y, Miyagawa S et al. Combined autologous cellular cardiomyoplasty with skeletal myoblasts and bone marrow cells in canine hearts for ischemic cardiomyopathy. J Thorac Cardiovasc Surg 2005; 130(3): 646-653.

197. Chachques JC, Cattadori B, Herreros J et al. Treatment of heart failure with autologous skeletal myoblasts. Herz 2002; 27: 570-578.

198. Mocini D, Colivicchi F, Santini M. Stem cell therapy for cardiac arrhythmias. Ital Heart J 2005; 6(3): 267-71.

Labels
Paediatric cardiology Internal medicine Cardiac surgery Cardiology
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#