Genetic interaction analysis comes to the diploid human pathogen Candida albicans
Autoři:
Virginia E. Glazier aff001; Damian J. Krysan aff002
Působiště autorů:
Department of Biology, Niagara University, New York, New York, United States of America
aff001; Departments of Pediatrics and Microbiology/Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
aff002
Vyšlo v časopise:
Genetic interaction analysis comes to the diploid human pathogen Candida albicans. PLoS Pathog 16(4): e1008399. doi:10.1371/journal.ppat.1008399
Kategorie:
Pearls
doi:
https://doi.org/10.1371/journal.ppat.1008399
Zdroje
1. Homann OR, Dea J, Noble SM, Johnson AD. A phenotypic profile of the Candida albicans regulatory network. PLoS Genet. 2009;5(12):e1000783. doi: 10.1371/journal.pgen.1000783 20041210
2. Schwarzmüller T, Ma B, Hiller E, Istel F, Tscherner M, Brunke S, et al. Systematic phenotyping of a large-scale Candida glabrata deletion collection reveals novel antifungal tolerance genes. PLoS Pathog. 2014;10(6):e1004211. doi: 10.1371/journal.ppat.1004211 24945925
3. Liu OW, Chun CD, Chow ED, Chen C, Madhani HD, Noble SM. Systematic genetic analysis of virulence in the human fungal pathogen Cryptococcus neoformans. Cell. 2008; 135(1):174–188. doi: 10.1016/j.cell.2008.07.046
4. Furukawa T, van Rhijn N, Fraczek M, Gsaller F, Davies E, Carr P, et al. The negative cofactor 2 complex is a key regulator of drug resistance in Aspergillus fumigatus. Nat Commun. 2020;11:427. doi: 10.1038/s41467-019-14191-1 31969561
5. Costanzo M, Kuzmin E, van Leeuwen J, Mair B, Moffat J, Boone C, et al. Global genetic networks and the genotype-to-phenotype relationship. Cell. 2019; 177(2):85–100.
6. Hickman MA, Zeng G, Forche A, Hirakawa MP, Abbey D, Harrison BD, et al. The ‘obligate diploid’ Candida albicans forms mating-competent haploids. Nature. 2013; 494(7435):55–59. doi: 10.1038/nature11865 23364695
7. Vyas VK, Barrasa MI, Fink GR. A Candida albicans CRISPR system permits genetic engineering of essential genes and gene families. Sci Adv. 2015; 1(3): e1500248. doi: 10.1126/sciadv.1500248
8. Huang MY, Mitchell AP. Marker Recycling in Candida albicans through CRISPR-Cas9-induced marker excision. mSphere. 2017;2(2):pii:e0050-17.
9. Shapiro RS, Chavez A, Porter CBM, Hamblin M, Kaas CS, DiCarlo JE, et al. A CRISPR-Cas9-based gene drive platform for genetic interaction analysis in Candida albicans. Nat Microbiol. 2018; 3:73–82. doi: 10.1038/s41564-017-0043-0 29062088
10. Glazier VE, Murante T, Koselny K, Murante D, Esqueda M, Wall GA, et al. Complex haploinsufficiency-based genetic analysis of Candida albicans transcription factors: tolls and applications to virulence-associated phenotypes. G3(Bethesda) 2018; 8(4):1299–1314.
11. Hartman JL 4th, Garvik B, Hartwell L. Principles for the buffering of genetic variation. Science. 2001; 291(5506):1001–1004. doi: 10.1126/science.291.5506.1001 11232561
12. Kuzmin E, Costanzo M, Andrews B, Boone C. Synthetic genetic arrays: automation of yeast genetics. Cold Spring Harb Protoc. 2016; 2016(4):pdb.top086652.
13. Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, Sevier CS, et al. The genetic landscape of a cell. Science. 2010; 327(5964):425–431. doi: 10.1126/science.1180823 20093466
14. Hernday AD, Noble SM, Mitrovich QM, Johnson AD. Genetics and molecular biology of Candida albicans. Methods Enzymology. 2010; 470:737–758.
15. Morio F, Lombardi L, Butler G. The CRISPR toolbox in medical mycology: state of the art and perspectives. PloS Pathog. 2020; 16(1):e1008201.
16. Nguyen N, Quail MF, Hernday AD. An efficient, rapid and recyclable system for CRISPR-mediated genome editing in Candida albicans. mSphere. 2017;2(2):e00149–17. doi: 10.1128/mSphereDirect.00149-17 28497115
17. Min K, Biermann A, Hogan DA, Konopka JB. Genetic analysis of NDT80 family transcription factors in Candida albicans using new CRISPR-Cas9 approaches. mSphere. 2018;3(6):e00545–18. doi: 10.1128/mSphere.00545-18 30463924
18. González-Hernández RJ, Jin K, Hernández-Chávez MJ, Díaz-Jiménez DF, Trujillo-Esquivel E, Clavijo-Giraldo DM, et al. Phosphomannosylation and the functional analysis of the extended Candida albicans MNN4-like gene family. Front Microbiol. 2017; 8:2156. doi: 10.3389/fmicb.2017.02156 29163439
19. Homann OR, Dea J, Noble SM, Johnson AD. A phenotypic profile of the Candida albicans regulatory network. PLoS Genet. 2009;5(12):e1000783. doi: 10.1371/journal.pgen.1000783 20041210
20. Nobile CJ, Fox EP, Nett JE, Sorrells TR, Mitrovich QM, Hernday AD, et al. A recently evolved transcriptional network controls biofilm development in Candida albicans. Cell. 2012; 148(1–2):126–138. doi: 10.1016/j.cell.2011.10.048 22265407
21. Glazier VE, Murante T, Murante D, Koselny K, Liu Y, Kim D, et al. Genetic analysis of the Candida albicans biofilm transcription factor network using simple and complex haploinsufficiency. PLoS Genet. 2017; 13(8):e1006948. doi: 10.1371/journal.pgen.1006948 28793308
Článek vyšel v časopise
PLOS Pathogens
2020 Číslo 4
- Nový algoritmus zpřesní predikci rizika kardiovaskulárních onemocnění
- Jak se válečná Ukrajina stala semeništěm superrezistentních bakterií
- Nejpodivnější vačnatci, rybí dvojníci, pradávná syfilis a katastrofické zapomínání – „jednohubky“ z výzkumu 2025/2
- Není statin jako statin aneb praktický přehled rozdílů jednotlivých molekul
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
Nejčtenější v tomto čísle
- Battling brain-eating amoeba: Enigmas surrounding immunity to Naegleria fowleri
- Drosophila as a model for the gut microbiome
- Role for the shelterin protein TRF2 in human herpesvirus 6A/B chromosomal integration
- Genetic interaction analysis comes to the diploid human pathogen Candida albicans