Drosophila as a model for the gut microbiome
Autoři:
William B. Ludington aff001; William W. Ja aff003
Působiště autorů:
Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, United States of America
aff001; Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
aff002; Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
aff003; Center on Aging, The Scripps Research Institute, Jupiter, Florida, United States of America
aff004
Vyšlo v časopise:
Drosophila as a model for the gut microbiome. PLoS Pathog 16(4): e1008398. doi:10.1371/journal.ppat.1008398
Kategorie:
Pearls
doi:
https://doi.org/10.1371/journal.ppat.1008398
Zdroje
1. Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV, Knight R. Current understanding of the human microbiome. Nature Medicine. 2018;24(4):392–400. doi: 10.1038/nm.4517 29634682
2. Cho I, Blaser MJ. Applications of Next-Generation Sequencing: The human microbiome: at the interface of health and disease. Nature Reviews Genetics. 2012;13(4):260–70. doi: 10.1038/nrg3182 22411464
3. Sender R, Fuchs S, Milo R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biol. 2016;14(8):e1002533. doi: 10.1371/journal.pbio.1002533 27541692
4. Koyle ML, Veloz M, Judd AM, Wong AC-N, Newell PD, Douglas AE, et al. Rearing the Fruit Fly Drosophila melanogaster Under Axenic and Gnotobiotic Conditions. Journal of visualized experiments: JoVE. 2016;(113). doi: 10.3791/54219 27500374
5. Douglas AE. Simple animal models for microbiome research. Nature Reviews Microbiology. 2019:1–12. doi: 10.1038/s41579-018-0127-8
6. Steinfeld HM. Length of life of Drosophila melanogaster under aseptic conditions. Dissertation thesis. University of California, Berkeley. 1927:1–23.
7. Broderick NA, Lemaitre B. Gut-associated microbes of Drosophila melanogaster. Gut Microbes. 2012;3(4):307–21. doi: 10.4161/gmic.19896 22572876
8. Leulier F, MacNeil LT, Lee W-J, Rawls JF, Cani PD, Schwarzer M, et al. Integrative Physiology: At the Crossroads of Nutrition, Microbiota, Animal Physiology, and Human Health. Cell Metabolism. 2017;25(3):522–34. doi: 10.1016/j.cmet.2017.02.001 28273475
9. Kim S-H, Lee W-J. Role of DUOX in gut inflammation: lessons from Drosophila model of gut-microbiota interactions. Frontiers in Cellular and Infection Microbiology. 2014;3:116. doi: 10.3389/fcimb.2013.00116 24455491
10. Miguel-Aliaga I, Jasper H, Lemaitre B. Anatomy and Physiology of the Digestive Tract of Drosophila melanogaster. Genetics. 2018;210(2):357–96. doi: 10.1534/genetics.118.300224 30287514
11. Buchon N, Broderick NA, Lemaitre B. Gut homeostasis in a microbial world: insights from Drosophila melanogaster. Nature Reviews Microbiology. 2013;11(9):615–26. doi: 10.1038/nrmicro3074 23893105
12. Storelli G, Defaye A, Erkosar B, Hols P, Royet J, Leulier F. Lactobacillus plantarum Promotes Drosophila Systemic Growth by Modulating Hormonal Signals through TOR-Dependent Nutrient Sensing. Cell Metabolism. 2011;14(3):403–14. doi: 10.1016/j.cmet.2011.07.012 21907145
13. Fischer C, Trautman EP, Crawford JM, Stabb EV, Handelsman J, Broderick NA. Metabolite exchange between microbiome members produces compounds that influence Drosophila behavior. eLife. 2017;6. doi: 10.7554/eLife.18855 28068220
14. Blundon MA, Park A, Keith S, Oliver SL, Eutsey RA, Pyzel AM, et al. Microbiota-dependent elevation of Alcohol Dehydrogenase in Drosophila is associated with changes in alcohol-induced hyperactivity and alcohol preference. doi: 10.1101/444471
15. Lee H-Y, Lee S-H, Lee J-H, Lee W-J, Min K-J. The role of commensal microbes in the lifespan of Drosophila melanogaster. Aging. 2019;11. doi: 10.18632/aging.102073 31299010
16. Sansone CL, Cohen J, Yasunaga A, Xu J, Osborn G, Subramanian H, et al. Microbiota-Dependent Priming of Antiviral Intestinal Immunity in Drosophila. CHOM. 2015;18(5):571–81. doi: 10.1016/j.chom.2015.10.010 26567510
17. Keebaugh ES, Yamada R, Ja WW. The Nutritional Environment Influences the Impact of Microbes on Drosophila melanogasterLife Span. mBio. 2019;10(4):670–6. doi: 10.1128/mBio.00885-19 31289176
18. Keebaugh ES, Yamada R, Obadia B, Ludington WB, Ja WW. Microbial Quantity Impacts Drosophila Nutrition, Development, and Lifespan. iScience. 2018;4:247–59. doi: 10.1016/j.isci.2018.06.004 30240744
19. Bing X, Gerlach J, Loeb G, Buchon N. Nutrient-Dependent Impact of Microbes on Drosophila suzukii Development mBio. 2018;9(2):e02199–17. doi: 10.1128/mBio.02199-17 29559576
20. Sannino DR, Dobson AJ, Edwards K, Angert ER, Buchon N. The Drosophila melanogaster Gut Microbiota Provisions Thiamine to Its Host. mBio. 2018;9(2). doi: 10.1128/mBio.00155-18 29511074
21. Wong AC-N, Chaston JM, Douglas AE. The inconstant gut microbiota of Drosophila species revealed by 16S rRNA gene analysis. The ISME Journal. 2013;7(10):1922–32. doi: 10.1038/ismej.2013.86 23719154
22. Blum JE, Fischer CN, Miles J, Handelsman J. Frequent Replenishment Sustains the Beneficial Microbiome of Drosophila melanogaster. mBio. 2013;4(6):e00860-13–e-13. doi: 10.1128/mBio.00860-13 24194543
23. Pais IS, Valente RS, Sporniak M, Teixeira L. Drosophila melanogaster establishes a species-specific mutualistic interaction with stable gut-colonizing bacteria. PLoS Biol. 2018;16(7):e2005710. doi: 10.1371/journal.pbio.2005710 29975680
24. Obadia B, Güvener ZT, Zhang V, Ceja-Navarro JA, Brodie EL, Ja WW, et al. Probabilistic Invasion Underlies Natural Gut Microbiome Stability. Current biology. 2017;27(13):1999–2006.e8. doi: 10.1016/j.cub.2017.05.034 28625783
25. Wong AC-N, Luo Y, Jing X, Franzenburg S, Bost A, Douglas AE. The Host as the Driver of the Microbiota in the Gut and External Environment of Drosophila melanogaster. Applied and Environmental Microbiology. 2015;81(18):6232–40. doi: 10.1128/AEM.01442-15 26150460
26. Shibata T, Maki K, Hadano J, Fujikawa T, Kitazaki K, Koshiba T, et al. Crosslinking of a Peritrophic Matrix Protein Protects Gut Epithelia from Bacterial Exotoxins. PLoS Pathog. 2015;11(10):e1005244. doi: 10.1371/journal.ppat.1005244 26506243
27. Li H, Qi Y, Jasper H. Preventing Age-Related Decline of Gut Compartmentalization Limits Microbiota Dysbiosis and Extends Lifespan. CHOM. 2016;19(2):240–53. doi: 10.1016/j.chom.2016.01.008 26867182
28. Winans NJ, Walter A, Chouaia B, Chaston JM, Douglas AE, Newell PD. A genomic investigation of ecological differentiation between free-living and Drosophila-associated bacteria. Molecular Ecology. 2017. doi: 10.1111/mec.14232 28667798
29. Storelli G, Strigini M, Grenier T, Bozonnet L, Schwarzer M, Daniel C, et al. Drosophila Perpetuates Nutritional Mutualism by Promoting the Fitness of Its Intestinal Symbiont Lactobacillus plantarum. Cell Metabolism. 2017:1–25. doi: 10.1016/j.cmet.2017.11.011 29290388
30. Wong AC-N, Wang Q-P, Morimoto J, Senior AM, Lihoreau M, Neely GG, et al. Gut Microbiota Modifies Olfactory-Guided Microbial Preferences and Foraging Decisions in Drosophila. Current biology. 2017:1–13. doi: 10.1016/j.cub.2017.07.022 28756953
31. Leitão-Gonçalves R, Carvalho-Santos Z, Francisco AP, Fioreze GT, Anjos M, Baltazar C, et al. Commensal bacteria and essential amino acids control food choice behavior and reproduction. PLoS Biol. 2017;15(4):e2000862. doi: 10.1371/journal.pbio.2000862 28441450
32. Inamine H, Ellner SP, Newell PD, Luo Y, Buchon N, Douglas AE. Spatiotemporally Heterogeneous Population Dynamics of Gut Bacteria Inferred from Fecal Time Series Data. mBio. 2018:1–17. doi: 10.1128/mBio.01453-17 29317508
33. Newell PD, Douglas AE. Interspecies Interactions Determine the Impact of the Gut Microbiota on Nutrient Allocation in Drosophila melanogaster. Applied and Environmental Microbiology. 2013;80(2):788–96. doi: 10.1128/AEM.02742-13 24242251
34. Sommer AJ, Newell PD. Metabolic Basis for Mutualism between Gut Bacteria and Its Impact on the Drosophila melanogaster Host. Applied and Environmental Microbiology. 2019;85(2). doi: 10.1128/AEM.01882-18 30389767
35. Gould AL, Zhang V, Lamberti L, Jones EW, Obadia B, Korasidis N, et al. Microbiome interactions shape host fitness. Proceedings of the National Academy of Sciences. 2018;6:201809349. doi: 10.1073/pnas.1809349115 30510004
36. Eble H, Joswig M, Lamberti L, Ludington WB. Cluster partitions and fitness landscapes of the Drosophila fly microbiome. Journal of mathematical biology. 2019;79:861–99. doi: 10.1007/s00285-019-01381-0 31101975
37. Fast D, Kostiuk B, Foley E, Pukatzki S. Commensal pathogen competition impacts host viability. Proceedings of the National Academy of Sciences. 2018;3:201802165. doi: 10.1371/journal.ppat.1000582
Článek vyšel v časopise
PLOS Pathogens
2020 Číslo 4
- Může hubnutí souviset s vyšším rizikem nádorových onemocnění?
- Raději si zajděte na oční! Jak souvisí citlivost zraku s rozvojem demence?
- Co způsobuje pooperační infekce? Na vině může být i naše vlastní mikrobiota
- Čeká nás průlom v diagnostice karcinomu pankreatu?
- Polibek, který mi „vzal nohy“ aneb vzácný výskyt EBV u 70leté ženy – kazuistika
Nejčtenější v tomto čísle
- Battling brain-eating amoeba: Enigmas surrounding immunity to Naegleria fowleri
- Genetic interaction analysis comes to the diploid human pathogen Candida albicans
- Human cytomegalovirus IE2 drives transcription initiation from a select subset of late infection viral promoters by host RNA polymerase II
- Drosophila as a model for the gut microbiome