Subunit P60 of phosphatidylinositol 3-kinase promotes cell proliferation or apoptosis depending on its phosphorylation status
Autoři:
Yu-Qin Di aff001; Yu-Meng Zhao aff001; Ke-Yan Jin aff001; Xiao-Fan Zhao aff001
Působiště autorů:
Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
aff001
Vyšlo v časopise:
Subunit P60 of phosphatidylinositol 3-kinase promotes cell proliferation or apoptosis depending on its phosphorylation status. PLoS Genet 17(4): e1009514. doi:10.1371/journal.pgen.1009514
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1009514
Souhrn
The regulatory subunits (P60 in insects, P85 in mammals) determine the activation of the catalytic subunits P110 in phosphatidylinositol 3-kinases (PI3Ks) in the insulin pathway for cell proliferation and body growth. However, the regulatory subunits also promote apoptosis via an unclear regulatory mechanism. Using Helicoverpa armigera, an agricultural pest, we showed that H. armigera P60 (HaP60) was phosphorylated under insulin-like peptides (ILPs) regulation at larval growth stages and played roles in the insulin/ insulin-like growth factor (IGF) signaling (IIS) to determine HaP110 phosphorylation and cell membrane translocation; whereas, HaP60 was dephosphorylated and its expression increased under steroid hormone 20-hydroxyecdysone (20E) regulation during metamorphosis. Protein tyrosine phosphatase non-receptor type 6 (HaPTPN6, also named tyrosine-protein phosphatase corkscrew-like isoform X1 in the genome) was upregulated by 20E to dephosphorylate HaP60 and HaP110. 20E blocked HaP60 and HaP110 translocation to the cell membrane and reduced their interaction. The phosphorylated HaP60 mediated a cascade of protein phosphorylation and forkhead box protein O (HaFOXO) cytosol localization in the IIS to promote cell proliferation. However, 20E, via G protein-coupled-receptor-, ecdysone receptor-, and HaFOXO signaling axis, upregulated HaP60 expression, and the non-phosphorylated HaP60 interacted with phosphatase and tensin homolog (HaPTEN) to induce apoptosis. RNA interference-mediated knockdown of HaP60 and HaP110 in larvae repressed larval growth and apoptosis. Thus, HaP60 plays dual functions to promote cell proliferation and apoptosis by changing its phosphorylation status under ILPs and 20E regulation, respectively.
Klíčová slova:
Apoptosis – Insulin – Cell membranes – Cell proliferation – Fats – Larvae – Metamorphosis – Phosphorylation
Zdroje
1. Bilanges B, Posor Y, Vanhaesebroeck B. PI3K isoforms in cell signalling and vesicle trafficking. Nature reviews. Mol Cell Biol. 2019;20(9):515–534. doi: 10.1038/s41580-019-0129-z 31110302.
2. Inukai K, Funaki M, Anai M, Ogihara T, Katagiri H, Fukushima Y, et al. Five isoforms of the phosphatidylinositol 3-kinase regulatory subunit exhibit different associations with receptor tyrosine kinases and their tyrosine phosphorylations. FEBS letters. 2001;490(1–2):32–8. doi: 10.1016/s0014-5793(01)02132-9 11172806.
3. Zhao L, Vogt PK. Class I PI3K in oncogenic cellular transformation. Oncogene. 2008;27(41):5486–96. Epub 2008/09/17. doi: 10.1038/onc.2008.244 18794883; PubMed Central PMCID: PMC2757120.
4. Jiang X, Chen S, Asara JM, Balk SP. Phosphoinositide 3-kinase pathway activation in phosphate and tensin homolog (PTEN)-deficient prostate cancer cells is independent of receptor tyrosine kinases and mediated by the p110beta and p110delta catalytic subunits. J Biol Chem. 2010;285(20):14980–9. doi: 10.1074/jbc.M109.085696 20231295; PubMed Central PMCID: PMC2865293.
5. Vanhaesebroeck B, Alessi DR. The PI3K-PDK1 connection: more than just a road to PKB. Biochem J. 2000;346 Pt 3:561–76. Epub 2000/03/04. 10698680; PubMed Central PMCID: PMC1220886.
6. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell. 1999;96(6):857–68. Epub 1999/04/02. doi: 10.1016/s0092-8674(00)80595-4 10102273.
7. Maehama T, Dixon JE. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem. 1998;273(22):13375–13378. doi: 10.1074/jbc.273.22.13375 9593664
8. Yu J, Zhang Y, McIlroy J, Rordorf-Nikolic T, Orr GA, Backer JM. Regulation of the p85/p110 phosphatidylinositol 3’-kinase: stabilization and inhibition of the p110alpha catalytic subunit by the p85 regulatory subunit. Mol Cell Biol. 1998;18(3):1379–87. Epub 1998/03/06. doi: 10.1128/mcb.18.3.1379 9488453; PubMed Central PMCID: PMC108851.
9. Vallejo-Diaz J, Chagoyen M, Olazabal-Moran M, Gonzalez-Garcia A, Carrera AC. The Opposing Roles of PIK3R1/p85alpha and PIK3R2/p85beta in Cancer. Trends Cancer. 2019;5(4):233–244. Epub 2019/04/10. doi: 10.1016/j.trecan.2019.02.009 30961830.
10. Zhang L, Huang J, Yang N, Greshock J, Liang S, Hasegawa K, et al. Integrative genomic analysis of phosphatidylinositol 3 ’-kinase family identifies PIK3R3 as a potential therapeutic target in epithelial ovarian cancer. Clin Cancer Res. 2007;13(18):5314–5321. doi: 10.1158/1078-0432.CCR-06-2660 17875760.
11. Li G, Xie N, Yao Y, Zhang Y, Guo JJ, Feng YQ, et al. Identification of PI3K regulatory subunit p55 gamma as a novel inhibitor of vascular smooth muscle cell proliferation and neointimal formation. Cardiovasc Res. 2015;105(1):75–85. doi: 10.1093/cvr/cvu235 25388664.
12. Edgar BA. How flies get their size: genetics meets physiology. Nat Rev Genet. 2006;7(12):907–916. doi: 10.1038/nrg1989 17139322.
13. Xu TQ, Jiang X, Denton D, Kumar S. Ecdysone controlled cell and tissue deletion. Cell Death Differ. 2020;27(1):1–14. doi: 10.1038/s41418-019-0456-9 31745213.
14. Nijhout HF, Callier V. Developmental mechanisms of body size and wing-body scaling in insects. Annu Rev Entomol. 2015;60:141–56. doi: 10.1146/annurev-ento-010814-020841 25341104.
15. Nassel DR, Vanden Broeck J. Insulin/IGF signaling in Drosophila and other insects: factors that regulate production, release and post-release action of the insulin-like peptides. Cell Mol Life Sci. 2016;73(2):271–90. doi: 10.1007/s00018-015-2063-3 26472340.
16. Mirth CK, Riddiford LM. Size assessment and growth control: how adult size is determined in insects. BioEssays. 2007;29(4):344–55. doi: 10.1002/bies.20552 17373657.
17. Gu SH, Lin JL, Lin PL, and Chen CH. Insulin stimulates ecdysteroidogenesis by prothoracic glands in the silkworm, Bombyx mori. Insect Biochem Mol Biol. 2009;39(3):171–9. doi: 10.1016/j.ibmb.2008.10.012 19049871.
18. Rewitz KF, Yamanaka N, Gilbert LI, O’Connor MB. The insect neuropeptide PTTH activates receptor tyrosine kinase torso to initiate metamorphosis. Science. 2009;326(5958):1403–5. doi: 10.1126/science.1176450 19965758.
19. Riddiford LM, Cherbas P, Truman JW. Ecdysone receptors and their biological actions. Vitam Horm. 2001;60:1–73. doi: 10.1016/s0083-6729(00)60016-x 11037621.
20. Yamanaka N, Rewitz KF, O’Connor MB. Ecdysone Control of Developmental Transitions: Lessons from Drosophila Research. Annu Rev Entomol. 2013;58:497–516. doi: 10.1146/annurev-ento-120811-153608 23072462.
21. King-Jones K, Thummel CS. Nuclear receptors—a perspective from Drosophila. Nat Rev Genet. 2005;6(4):311–23. Epub 2005/04/02. doi: 10.1038/nrg1581 15803199.
22. Okamoto N, Viswanatha R, Bittar R, Li ZC, Haga-Yamanaka S, Perrimon N., et al. A Membrane Transporter Is Required for Steroid Hormone Uptake in Drosophila. Dev cell. 2018;47(3):294–+. doi: 10.1016/j.devcel.2018.09.012 30293839.
23. Colombani J, Bianchini L, Layalle S, Pondeville E, Dauphin-Villemant C, Antoniewski C, et al. Antagonistic actions of ecdysone and insulins determine final size in Drosophila. Science. 2005;310(5748):667–70. Epub 2005/09/24. doi: 10.1126/science.1119432 16179433.
24. Weinkove D, Leevers SJ, MacDougall LK, Waterfield MD. p60 is an adaptor for the Drosophila phosphoinositide 3-kinase, Dp110. J Biol Chem. 1997;272(23):14606–14610. doi: 10.1074/jbc.272.23.14606 9169420.
25. Cuevas BD, Lu Y, Mao M, Zhang J, LaPushin R, Siminovitch K, et al. Tyrosine phosphorylation of p85 relieves its inhibitory activity on phosphatidylinositol 3-kinase. J Biol Chem. 2001;276(29):27455–61. Epub 2001/05/05. doi: 10.1074/jbc.M100556200 11337495.
26. Eijkelenboom A, Burgering BM. FOXOs: signalling integrators for homeostasis maintenance. Nature reviews. Mol Cell Biol. 2013;14(2):83–97. Epub 2013/01/18. doi: 10.1038/nrm3507 23325358.
27. Hung KC, Wang SG, Lin ML, Chen SS. Citrate-Induced p85-PTEN Complex Formation Causes G(2)/M Phase Arrest in Human Pharyngeal Squamous Carcinoma Cell Lines. Int J Mol Sci. 2019;20(9). doi: 10.3390/ijms20092105 31035650.
28. Barbour LA, Mizanoor Rahman S, Gurevich I, Leitner JW, Fischer SJ, Roper MD, et al. Increased P85alpha is a potent negative regulator of skeletal muscle insulin signaling and induces in vivo insulin resistance associated with growth hormone excess. J Biol Chem. 2005;280(45):37489–94. doi: 10.1074/jbc.M506967200 16166093.
29. Chen D, Mauvais-Jarvis F, Bluher M, Fisher SJ, Jozsi A, Goodyear LJ, et al. p50alpha/p55alpha phosphoinositide 3-kinase knockout mice exhibit enhanced insulin sensitivity. Mol Cell Biol. 2004;24(1):320–9. Epub 2003/12/16. doi: 10.1128/mcb.24.1.320-329.2004 14673165; PubMed Central PMCID: PMC303335.
30. Katso R, Okkenhaug K, Ahmadi K, White S, Timms J, Waterfield MD. Cellular function of phosphoinositide 3-kinases: implications for development, homeostasis, and cancer. Annu Rev Cell Dev Biol. 2001;17:615–75. Epub 2001/11/01. doi: 10.1146/annurev.cellbio.17.1.615 11687500.
31. Nijhout HF, Riddiford LM, Mirth C, Shingleton AW, Suzuki Y, Callier V. The developmental control of size in insects. Wiley Interdiscip Rev Dev Biol. 2014;3(1):113–34. Epub 2014/06/07. doi: 10.1002/wdev.124 24902837; PubMed Central PMCID: PMC4048863.
32. Yuan D, Zhou S, Liu S, Li K, Zhao H, Long S, et al. The AMPK-PP2A axis in insect fat body is activated by 20-hydroxyecdysone to antagonize insulin/IGF signaling and restrict growth rate. P Natl Acad Sci USA. 2020;117(17):9292–9301. Epub 2020/04/12. doi: 10.1073/pnas.2000963117 32277029; PubMed Central PMCID: PMC7196814.
33. Dumas KJ, Guo C, Shih HJ, Hu PJ. Influence of steroid hormone signaling on life span control by Caenorhabditis elegans insulin-like signaling. G3 (Bethesda). 2013;3(5):841–50. Epub 2013/04/04. doi: 10.1534/g3.112.005116 23550118; PubMed Central PMCID: PMC3656731.
34. Gilbert LI, Rybczynski R, Warren JT. Control and biochemical nature of the ecdysteroidogenic pathway. Annu Rev Entomol. 2002;47:883–916. doi: 10.1146/annurev.ento.47.091201.145302 11729094.
35. Kang XL, Zhang JY, Wang D, Zhao YM, Han XL, Wang JX, et al. The steroid hormone 20-hydroxyecdysone binds to dopamine receptor to repress lepidopteran insect feeding and promote pupation. PLoS Genet. 2019;15(8):e1008331. Epub 2019/08/15. doi: 10.1371/journal.pgen.1008331 31412019; PubMed Central PMCID: PMC6693746.
36. Delanoue R, Slaidina M, Leopold P. The steroid hormone ecdysone controls systemic growth by repressing dMyc function in Drosophila fat cells. Dev cell. 2010;18(6):1012–21. Epub 2010/07/16. doi: 10.1016/j.devcel.2010.05.007 20627082.
37. Lee GJ, Han G, Yun HM, Lim JJ, Noh S, Lee J, et al. Steroid signaling mediates nutritional regulation of juvenile body growth via IGF-binding protein in Drosophila. P Natl Acad Sci USA. 2018;115(23):5992–5997. Epub 2018/05/23. doi: 10.1073/pnas.1718834115 29784791; PubMed Central PMCID: PMC6003328.
38. Hyun S, Lee JH, Jin H, Nam J, Namkoong B, Lee G, et al. Conserved MicroRNA miR-8/miR-200 and its target USH/FOG2 control growth by regulating PI3K. Cell. 2009;139(6):1096–108. Epub 2009/12/17. doi: 10.1016/j.cell.2009.11.020 20005803.
39. Jin H, Kim VN, Hyun S. Conserved microRNA miR-8 controls body size in response to steroid signaling in Drosophila. Genes Dev. 2012;26(13):1427–1432. doi: 10.1101/gad.192872.112 22751499.
40. Xu E, Schwab M, Marette A. Role of protein tyrosine phosphatases in the modulation of insulin signaling and their implication in the pathogenesis of obesity-linked insulin resistance. Rev Endocr Metab Dis. 2014;15(1):79–97. doi: 10.1007/s11154-013-9282-4 24264858.
41. Dubois MJ, Bergeron S, Kim HJ, Dombrowski L, Perreault M, Fournes B, et al. The SHP-1 protein tyrosine phosphatase negatively modulates glucose homeostasis. Nat Med. 2006;12(5):549–56. Epub 2006/04/18. doi: 10.1038/nm1397 16617349.
42. Britton JS, Lockwood WK, Li L, Cohen SM, Edgar BA. Drosophila’s insulin/PI3-kinase pathway coordinates cellular metabolism with nutritional conditions. Developmental cell. 2002;2(2):239–49. Epub 2002/02/08. doi: 10.1016/s1534-5807(02)00117-x 11832249.
43. Cai MJ, Zhao WL, Jing YP, Song Q, Zhang XQ, Wang JX, et al. 20-Hydroxyecdysone activates Forkhead box O to promote proteolysis during Helicoverpa armigera molting. Development. 2016;143(6):1005–15. doi: 10.1242/dev.128694 26893349.
44. Zhao XF, Wang JX, Wang YC. Purification and characterization of a cysteine proteinase from eggs of the cotton boll worm, Helicoverpa armigera. Insect biochemistry and molecular biology. 1998;28(4):259–264. https://doi.org/10.1016/S0965-1748(98)00015-0.
45. Liu W, Cai MJ, Wang JX, Zhao XF. In a nongenomic action, steroid hormone 20-hydroxyecdysone induces phosphorylation of cyclin-dependent kinase 10 to promote gene transcription. Endocrinology. 2014;155(5):1738–50. Epub 2014/02/13. doi: 10.1210/en.2013-2020 24517229.
46. Di YQ, Han XL, Kang XL, Wang D, Chen CH, Wang JX, et al. Autophagy triggers CTSD (cathepsin D) maturation and localization inside cells to promote apoptosis. Autophagy. 2020:1–23. Epub 2020/04/24. doi: 10.1080/15548627.2020.1752497 32324083.
Článek vyšel v časopise
PLOS Genetics
2021 Číslo 4
- Nový algoritmus zpřesní predikci rizika kardiovaskulárních onemocnění
- Jak se válečná Ukrajina stala semeništěm superrezistentních bakterií
- Nejpodivnější vačnatci, rybí dvojníci, pradávná syfilis a katastrofické zapomínání – „jednohubky“ z výzkumu 2025/2
- Není statin jako statin aneb praktický přehled rozdílů jednotlivých molekul
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
Nejčtenější v tomto čísle
- Aicardi-Goutières syndrome-associated gene SAMHD1 preserves genome integrity by preventing R-loop formation at transcription–replication conflict regions
- Aurora kinase A is essential for meiosis in mouse oocytes
- Functional assessment of the “two-hit” model for neurodevelopmental defects in Drosophila and X. laevis
- Pathways and signatures of mutagenesis at targeted DNA nicks