#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Účinky onkolytického viru Newcastleské choroby na imunitní odpověď – nová problematika v léčbě nádorových onemocnění


Autoři: W. Kooti 1;  H. Gouvarchin Ghaleh Esmaeili 1;  M. Farzanehpour 1;  R. Dorostkar 1;  B. Jalali Kondori 2;  M. Bolandian 1
Působiště autorů: Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran 1;  Gastroenterology and Liver Disease Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran 2
Vyšlo v časopise: Klin Onkol 2023; 36(2): 124-129
Kategorie: Původní práce
doi: https://doi.org/10.48095/ccko2023124

Souhrn

Východiska: Každý rok jsou milionům lidí diagnostikována nádorová onemocnění a jejich léčba představuje pro plátce zdravotní péče finanční zátěž. V oblasti nádorových onemocnění byl učiněn velký pokrok; jednou z nejnovějších metod je využití onkolytických virů. Cílem této studie bylo hodnocení vliv divokých kmenů onkolytického viru Newcastleské choroby (Newcastle disease virus wild-type strains – NDV-WTS) na imunitní systém. Materiál a metody: Čtyřicet myší bylo rozděleno do čtyř skupin (10 zvířat v každé skupině). Kontrolní skupině byl aplikován fosfátový pufr a experimentálním skupinám 1 (NDV-WTS 1), 2 (NDV-WTS 2) a 3 (NDV-WTS 3) byl 0., 14. a 28. den aplikován Newcastleský virus v titrech 10–1, 10–2 a 10–3. Třicátý první den bylo zvířatům do levého chodidla vpíchnuto 100 µl Newcastleského viru. Po 48 hodinách byla měřena přecitlivělost oddáleného typu (delayed-type hypersensitivity – DTH). Třicátý třetí den byly izolovány peritoneální makrofágy. Pak byla měřena proliferace buněk pomocí methyl-thiazolyl-tetrazolium (MTT) testu. Rovněž bylo hodnoceno vychytávání neutrální červeně a respirační vzplanutí makrofágů. Data byla analyzována pomocí statistického software SPSS, verze 19. Výsledky: Výsledky DTH testu ukázaly otok chodidla u kontrolní skupiny a ve skupinách NDV-WTS 1, NDV-WTS 2 a NDV-WTS 3 z 23,5 %, 23,5 %, 23,6 % a 23,6 %. V tomto ohledu nebyly mezi jednotlivými skupinami významné rozdíly (p > 0,05). Negativní nitroblue tetrazolium (NBT) test jakožto indikátor respiračního vzplanutí makrofágů neprokázal mezi skupinami významné rozdíly (p > 0,05). Vychytávání neutrální červeně a MTT test rovněž neukázaly mezi skupinami významné rozdíly (p > 0,05). Závěr: Výsledky této studie svědčí o tom, že DV-WTS v dávkách 10–1, 10–2 a 10–3 nemají na normální zdravé buňky žádné vedlejší účinky.

Klíčová slova:

nádorová onemocnění – virus – Newcastleský virus – imunitní systém – onkolytický virus – myši


Zdroje

1. Douek M, Taylor I. Good practice and quality assurance in surgical oncology. Lancet Oncology 2003; 4 (10): 626–630. doi: 10.1016/s1470-2045 (03) 01222-1.

2. Davis JJ, Fang B. Oncolytic virotherapy for cancer treatment: challenges and solutions. J Gene Med 2005; 7 (11): 1380–1389. doi: 10.1002/jgm.800.

3. Darabi A, Dehghanfard M, Jozan S et al. Investigating the association between allergic diseases and COVID-19 in 400 Iranian patients. Allergol Immunopathol 2021; 49 (5): 9–15. doi: 10.15586/aei.v49i5.105.

4. Safarirad M, Ganji AA, Nazari F et al. Transient increased immunoglobulin levels in a hyper-IgM syndrome patient with COVID-19 infection. Allergol Immunopathol 2021; 49 (6): 63–66. doi: 10.15586/aei.v49i6.92.

5. Martuza RL, Malick A, Markert JM et al. Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science 1991; 252 (5007): 854–856. doi: 10.1126/science.1851332.

6. Choi AH, O‘Leary MP, Fong Y et al. From benchtop to bedside: a review of oncolytic virotherapy. Biomedicines 2016; 4 (3): 18. doi: 10.3390/biomedicines4030018.

7. Chaurasiya S, Chen NG, Warner SG. Oncolytic virotherapy versus cancer stem cells: a review of approaches and mechanisms. Cancers (Basel) 2018; 10 (4): 124. doi: 10.3390/cancers10040124.

8. Schwaiger T, Knittler MR, Grund C et al. Newcastle disease virus mediates pancreatic tumor rejection via NK cell activation and prevents cancer relapse by prompting adaptive immunity. Int J Cancer 2017; 141 (12): 2505–2516. doi: 10.1002/ijc.31026.

9. Schirrmacher V, van Gool S, Stuecker W. Breaking therapy resistance: an update on oncolytic newcastle disease virus for improvements of cancer therapy. Biomedicines 2019; 7 (3): 66. doi: 10.3390/biomedicines7030066.

10. Liu T, Zhang Y, Cao Y et al. Optimization of oncolytic effect of Newcastle disease virus Clone30 by selecting sensitive tumor host and constructing more oncolytic viruses. Gene Ther 2021; 28 (12): 697–717. doi: 10.1038/s41434-020-0145-9.

11. Yurchenko KS, Zhou P, Kovner AV et al. Oncolytic effect of wild-type Newcastle disease virus isolates in cancer cell lines in vitro and in vivo on xenograft model. PLoS One 2018; 13 (4): e0195425. doi: 10.1371/journal.pone.0195425.

12. von Hoegen P, Zawatzky R, Schirrmacher V. Modification of tumor cells by a low dose of Newcastle disease virus. III. Potentiation of tumor-specific cytolytic T cell activity via induction of interferon-ab. Cell Immunol 1990; 126 (1): 80–90. doi: 10.1016/0008-8749 (90) 90 302-8.

13. Washburn B, Weigand MA, Grosse-Wilde A et al. TNF-related apoptosis-inducing ligand mediates tumoricidal activity of human monocytes stimulated by Newcastle disease virus. J Immunol 2003; 170 (4): 1814–1821. doi: 10.4049/jimmunol.170.4.1814.

14. Zeng J, Fournier P, Schirrmacher V. Induction of interferon-a and tumor necrosis factor-related apoptosis-inducing ligand in human blood mononuclear cells by hemagglutinin-neuraminidase but not F protein of Newcastle disease virus. Virology 2002; 297 (1): 19–30. doi: 10.1006/viro.2002.1413.

15. Schirrmacher V, Bai L, Umansky V et al. Newcastle disease virus activates macrophages for anti-tumor activity. Int J Oncol 2000; 16 (2): 363–436.

16. Zamarin D, Martínez-Sobrido L, Kelly K, Mansour M et al. Enhancement of oncolytic properties of recombinant newcastle disease virus through antagonism of cellular innate immune responses. Mol Ther 2009; 17 (4): 697–706. doi: 10.1038/mt.2008.286.

17. Niu Z, Bai F, Sun T et al. Recombinant Newcastle disease virus expressing IL15 demonstrates promising antitumor efficiency in melanoma model. Technol Cancer Res Treat 2015; 14 (5): 607–615. doi: 10.7785/tcrt.2012.500414.

18. Bai Y, Chen Y, Hong X et al. Newcastle disease virus enhances the growth-inhibiting and proapoptotic effects of temozolomide on glioblastoma cells in vitro and in vivo. Sci Rep 2018; 8 (1): 11470. doi: 10.1038/s41598-018-29929-y.

19. Zamarin D, Palese P. Oncolytic Newcastle disease virus for cancer therapy: old challenges and new directions. Future Microbiol 2012; 7 (3): 347–367. doi: 10.2217/fmb.12.4.

20. Liu T, Zhang Y, Cao Y et al. Optimization of oncolytic effect of Newcastle disease virus Clone30 by selecting sensitive tumor host and constructing more oncolytic viruses. Gene Ther 2021; 28 (12): 697–717. doi: 10.1038/s41434-020-0145-9.

21. Xu R, Palmer SG, Porotto M et al. Interaction between the hemagglutinin-neuraminidase and fusion glycoproteins of human parainfluenza virus type III regulates viral growth in vivo. MBio 2013; 4 (5): e00803–00813. doi: 10.1128/mBio.00803-13.

22. Bose S, Jardetzky TS, Lamb RA. Timing is everything: fine-tuned molecular machines orchestrate paramyxovirus entry. Virology 2015; 479–480: 518–531. doi: 10.1016/j.virol.2015.02.037.

23. Schirrmacher V, Haas C, Bonifer R et al. Human tumor cell modification by virus infection: an efficient and safe way to produce cancer vaccine with pleiotropic immune stimulatory properties when using Newcastle disease virus. Gene Ther 1999; 6 (1): 63–73. doi: 10.1038/ sj.gt.3300787.

24. Reichard KW, Lorence RM, Cascino CJ et al. Newcastle disease virus selectively kills human tumor cells. J Surg Res 1992; 52 (5): 448–453. doi: 10.1016/0022-4804 (92) 90310-v.

25. Lorence RM, Katubig BB, Reichard KW et al. Complete regression of human fibrosarcoma xenografts after local Newcastle disease virus therapy. Cancer Res 1994; 54 (23): 6017–6021.

26. Fábián Z, Csatary CM, Szeberényi J et al. P53-independent endoplasmic reticulum stress-mediated cytotoxicity of a Newcastle disease virus strain in tumor cell lines. J Virol 2007; 81 (6): 2817–2830. doi: 10.1128/JVI.02490-06.

27. McGinnes L, Morrison TG. Inhibition of receptor binding stabilizes Newcastle disease virus HN and F protein-containing complexes. J Virol 2006; 80 (6): 2894–2903. doi: 10.1128/JVI.80.6.2894-2903.2006.

28. Molouki A, Peeters B. Rescue of recombinant Newcastle disease virus: current cloning strategies and RNA polymerase provision systems. Arch Virol 2017; 162 (1): 1–12. doi: 10.1007/s00705-016-3065-7.

29. Schirrmacher V, Fournier P. Newcastle disease virus: a promising vector for viral therapy, immune therapy, and gene therapy of cancer. Methods Mol Biol 2009; 542: 565–605. doi: 10.1007/978-1-59745-561-9_30.

30. Zhang S, Sun Y, Chen H et al. Activation of the PKR/eIF2a signaling cascade inhibits replication of Newcastle disease virus. Virol J 2014; 11: 62. doi: 10.1186/1743-422X-11-62.

31. Welch BD, Paduch M, Leser GP et al. Probing the functions of the paramyxovirus glycoproteins F and HN with a panel of synthetic antibodies. J Virol 2014; 88 (20): 11713–11725. doi: 10.1128/JVI.01707-14.

32. Ji Y, Liu T, Jia Y et al. Two single mutations in the fusion protein of Newcastle disease virus confer hemagglutinin-neuraminidase independent fusion promotion and attenuate the pathogenicity in chickens. Virology 2017; 509: 146–151. doi: 10.1016/j.virol.2017.06.021.

33. Jarahian M, Watzl C, Fournier P et al. Activation of natural killer cells by newcastle disease virus hemagglutinin-neuraminidase. J Virol 2009; 83 (16): 8108–8121. doi: 10.1128/JVI.00211-09.

34. Lam HY, Yeap SK, Rasoli M et al. Safety and clinical usage of Newcastle disease virus in cancer therapy. J Biomed Biotechnol 2011; 2011: 718710. doi: 10.1155/ 2011/718710.

35. Ertel C, Millar NS, Emmerson PT et al. Viral hemagglutinin augments peptide-specific cytotoxic T cell responses. Eur J Immunol 1993; 23 (10): 2592–2596. doi: 10.1002/eji.1830231032.

36. Guo ZS, Liu Z, Bartlett DL. Oncolytic immunotherapy: dying the right way is a key to eliciting potent antitumor immunity. Front Oncol 2014; 4: 74. doi: 10.3389/fonc.2014.00074.

37. Schulze T, Kemmner W, Weitz J et al. Efficiency of adjuvant active specific immunization with Newcastle disease virus modified tumor cells in colorectal cancer patients following resection of liver metastases: results of a prospective randomized trial. Cancer Immunol Immunother 2009; 58 (1): 61–69. doi: 10.1007/s00262-008-05 26-1.

38. Schirrmacher V. Antitumor immune memory and its activation for control of residual tumor cells and improvement of patient survival. In: Sinkovics J, Horvath J (eds). Virus Therapy of Human Cancers. New York: Marcel Decker 2005: 481–574.

39. Ockert D, Schirrmacher V, Beck N et al. Newcastle disease virus-infected intact autologous tumor cell vaccine for adjuvant active specific immunotherapy of resected colorectal carcinoma. Clin Cancer Res 1996; 2 (1): 21–28.

40. Pecora AL, Rizvi N, Cohen GI et al. Phase I trial of intravenous administration of PV701, an oncolytic virus, in patients with advanced solid cancers. J Clin Oncol 2002; 20 (9): 2251–2266. doi: 10.1200/JCO.2002.08.042.

Štítky
Dětská onkologie Chirurgie všeobecná Onkologie

Článek vyšel v časopise

Klinická onkologie

Číslo 2

2023 Číslo 2
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

plice
INSIGHTS from European Respiratory Congress
nový kurz

Současné pohledy na riziko v parodontologii
Autoři: MUDr. Ladislav Korábek, CSc., MBA

Svět praktické medicíny 3/2024 (znalostní test z časopisu)

Kardiologické projevy hypereozinofilií
Autoři: prof. MUDr. Petr Němec, Ph.D.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#