What is the optimal dose of tyrosine kinase inhibitors in chronic myeloid leukaemia?
Authors:
D. Žáčková; P. Čičátková; A. Kvetková; T. Horňák; L. Semerád; J. Mayer
Authors‘ workplace:
Interní hematologická a onkologická klinika LF MU a FN Brno
Published in:
Transfuze Hematol. dnes,27, 2021, No. 1, p. 28-41.
Category:
Review/Educational Papers
doi:
https://doi.org/10.48095/cctahd202128
Zavedení inhibitorů tyrozinkináz (TKI) do léčby pacientů s chronickou myeloidní leukemií (CML) zásadním způsobem zlepšilo jejich prognózu a prodloužilo přežití téměř na úroveň celkové populace. Expozice dlouhodobě až celoživotně podávané léčbě je však zatížena rizikem nežádoucích účinků, snížením kvality života, vysokými finančními náklady i psychickým stigmatem trvalé připomínky existence nádorového onemocnění. Úplné vysazení dlouhodobé terapie a dosažení tzv. remise bez nutnosti podávání léčby (treatment-free remission – TFR) se stalo novým cílem léčby pacientů s CML, který je však reálně dosažitelný jen u malé části z nich. Stále větší pozornost je tak věnována optimalizaci dlouhodobé léčby zejména ve smyslu redukce dávek TKI či jejich přerušovaného podávání s cílem zlepšit toleranci léčby a přitom udržet dostatečnou účinnost. Původně doporučené standardní dávky TKI, jaké vyplynuly z farmakokinetických a farmakodynamických studií, si vyžádaly v několika případech modifikaci již v průběhu následného klinického zkoušení, zejména na vrub přibývajících dat o snášenlivosti léčby. Snahy o další snižování dávek či úpravu dávkovacích schémat nacházejí podporu v příznivých datech již publikovaných analýz či jsou předmětem řady probíhajících klinických studií vč. těch, které mají jako konečný cíl dosažení TFR. Výzva ke zvážení redukce dávky TKI je začleněna i v nových doporučeních Evropské leukemické sítě pro léčbu CML. Předkládaný článek nabízí ucelený přehled dosavadních pokusů o optimalizaci dávek TKI a jejich výsledků v širším kontextu vývoje na poli standardního dávkování a přibývajících poznatků v oblasti farmakokinetiky.
Overview
The introduction of tyrosine kinase inhibitors (TKI) has significantly improved the prognosis of chronic myeloid leukaemia (CML) patients and prolonged their life expectancy near to that of the global population. However, long-lasting or even lifelong therapy carries a risk of side effects, quality of life impairment, high financial costs and also psychological concerns regarding the ever-present underlying cancer. Long-time therapy discontinuation with treatment-free remission (TFR) achievement became a new goal in CML treatment, but unfortunately could be achieved in only a minority of patients. Thus, increasing attention has focused on long-term therapy optimization, particularly in terms of TKI dose reduction or intermittent administration in order to improve tolerance and maintain efficacy. Originally recommended TKI standard doses based on pharmacokinetics and pharmacodynamics studies were already modified in several cases during subsequent clinical trials mainly due to increasing evidence of treatment safety. An effort to further decrease TKI doses or use intermittent dosing has been supported by favourable published data, or has been a subject of ongoing clinical trials including dose reductions prior to a TFR attempt. TKI dose reduction consideration has also been included in the new European LeukemiaNet recommendations for treating CML. In this manuscript, a comprehensive review of TKI dose optimization attempts is offered in the broader context of recommended standard TKI doses evolution and increasing pharmacokinetics knowledge.
Keywords:
chronic myeloid leukaemia – Tyrosine kinase inhibitors – dose reduction – intermittent dosing
Sources
1. O‘Brien SG, Guilhot F, Larson RA, et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med. 2003; 348: 994–1004.
2. Kantarjian H, Shah NP, Hochhaus A, et al. Dasatinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med. 2010; 362 (24): 2260–2270.
3. Saglio G, Kim DW, Issaragrisil S, et al. ENESTnd Investigators. Nilotinib versus imatinib for newly diagnosed chronic myeloid leukemia. N Engl J Med. 2010; 362 (24): 2251–2259.
4. Cortes JE, Gambacorti-Passerini C, Deininger MW, et al. Bosutinib versus imatinib for newly diagnosed chronic myeloid leukemia: results from the randomized BFORE trial. J Clin Oncol. 2018; 36 (3): 231–237.
5. Bower H, Björkholm M, Dickman PW, et al. Life expectancy of patients with chronic myeloid leukemia approaches the life expectancy of the general population. J Clin Oncol. 2016; 34 (24): 2851–2857.
6. Corbin AS, Agarwal A, Loriaux M, et al. Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR-ABL activity. J Clin Invest. 2011; 121 (1): 396–409. Erratum in: J Clin Invest. 2011; 121 (3): 1222.
7. Šrámek J, Karas M, Lysák D, Jindra P. Možnost ukončení terapie tyrozin-kinázovými inhibitory u nemocných s chronickou myeloidní leukemií a koncept „treatment-free remission“. Transfuze Hematol Dnes. 2017; 23 (4): 192–198.
8. Čičátková P, Žáčková D. Vysazování inhibitorů tyrozinkináz u pacientů s chronickou myeloidní leukemií ve studiích a klinické praxi. Transfuze Hematol Dnes 2020; 26 (4): 279–291.
9. Hochhaus A, Saglio G, Hughes TP, et al. Long-term benefits and risks of frontline nilotinib vs imatinib for chronic myeloid leukemia in chronic phase: 5-year update of the randomized ENESTnd trial. Leukemia. 2016; 30 (5): 1044–1054.
10. Cortes JE, Saglio G, Kantarjian HM, et al. Final 5-year study results of DASISION: the dasatinib versus imatinib study in treatment-naïve chronic myeloid leukemia patients trial. J Clin Oncol. 2016; 34 (20): 2333–2340.
11. Cortes JE, Kim DW, Pinilla-Ibarz J, et al. Ponatinib efficacy and safety in Philadelphia chromosome-positive leukemia: final 5-year results of the phase 2 PACE trial. Blood. 2018; 132 (4): 393–404.
12. Experts in Chronic Myeloid Leukemia. The price of drugs for chronic myeloid leukemia (CML) is a reflection of the unsustainable prices of cancer drugs: from the perspective of a large group of CML experts. Blood. 2013; 121 (22): 4439–4442.
13. Ibrahim AR, Eliasson L, Apperley JF, et al. Poor adherence is the main reason for loss of CCyR and imatinib failure for chronic myeloid leukemia patients on long-term therapy. Blood. 2011; 117 (14): 3733–3736.
14. Shah NP, Kim DW, Kantarjian H, et al. Potent, transient inhibition of BCR-ABL with dasatinib 100 mg daily achieves rapid and durable cytogenetic responses and high transformation-free survival rates in chronic phase chronic myeloid leukemia patients with resistance, suboptimal response or intolerance to imatinib. Haematologica. 2010; 95 (2): 232–240.
15. Cortes JE, Kim DW, Kantarjian HM, et al. Bosutinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia: results from the BELA trial. J Clin Oncol. 2012; 30 (28): 3486–3492.
16. Hehlmann R, Müller MC, Lauseker M, et al. Deep molecular response is reached by the majority of patients treated with imatinib, predicts survival, and is achieved more quickly by optimized high-dose imatinib: results from the randomized CML-study IV. J Clin Oncol. 2014; 32 (5): 415–423.
17. Druker BJ, Talpaz M, Resta DJ, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med. 2001; 344 (14): 1031–1037.
18. Peng B, Hayes M, Resta D, et al. Pharmacokinetics and pharmacodynamics of imatinib in a phase I trial with chronic myeloid leukemia patients. J Clin Oncol. 2004; 22 (5): 935–942.
19. Larson RA, Druker BJ, Guilhot F, et al. Imatinib pharmacokinetics and its correlation with response and safety inchronic-phase chronic myeloid leukemia: a subanalysis of the IRIS study. Blood. 2008; 111 (8): 4022–4028.
20. Guilhot F, Hughes TP, Cortes J, et al. Plasma exposure of imatinib and its correlation with clinical response in the Tyrosine Kinase Inhibitor Optimization and Selectivity Trial. Haematologica. 2012; 97 (5): 731–738.
21. Picard S, Titier K, Etienne G, et al. Trough imatinib plasma levels are associated with both cytogenetic and molecular responses to standard-dose imatinib in chronic myeloid leukemia. Blood. 2007; 109 (8): 3496–3499.
22. Forrest DL, Trainor S, Brinkman RR, et al. Cytogenetic and molecular responses to standard-dose imatinib in chronic myeloid leukemia are correlated with Sokal risk scores and duration of therapy but not trough imatinib plasma levels. Leuk Res. 2009; 33 (2): 271–275.
23. Faber E, Friedecký D, Mičová K, et al. Imatinib trough plasma levels do not correlate with the response to therapy in patients with chronic myeloid leukemia in routine clinical setting. Ann Hematol. 2012; 91 (6): 923–929.
24. Widmer N, Decosterd LA, Csajka C, et al. Population pharmacokinetics of imatinib and the role of alpha-acid glycoprotein. Br J Clin Pharmacol. 2006; 62 (1): 97–112.
25. Fava C, Cusato J, Ariaudo A, et al. Pharmacogenetic determinants of plasmatic and intracellular tyrosine kinase inhibitors. Haematologica. 2014; 99 (S1): Abs.P265.
26. Kantarjian H, Giles F, Wunderle L, et al. Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N Engl J Med. 2006; 354 (24): 2542–2551.
27. Larson RA, Yin OQ, Hochhaus A, et al. Population pharmacokinetic and exposure-response analysis of nilotinib in patients with newly diagnosed Ph+ chronic myeloid leukemia in chronic phase. Eur J Clin Pharmacol. 2012; 68 (5): 723–733.
28. Giles FJ, Yin OQ, Sallas WM, et al. Nilotinib population pharmacokinetics and exposure-response analysis in patients with imatinib-resistant or -intolerant chronic myeloid leukemia. Eur J Clin Pharmacol. 2013; 69 (4): 813–823.
29. Hiwase DK, White DL, Saunders VA, Kumar S, Melo JV, Hughes TP. Short-term intense Bcr-Abl kinase inhibition with nilotinib is adequate to trigger cell death in BCR-ABL (+) cells. Leukemia. 2009; 23 (6): 1205–1206.
30. Wagner MC, Dziadosz M, Melo JV, et al. Nilotinib shows prolonged intracellular accumulation upon pulse-exposure: a novel mechanism for induction of apoptosis in CML cells. Leukemia. 2013; 27 (7): 1567–1570.
31. Talpaz M, Shah NP, Kantarjian H, et al. Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N Engl J Med. 2006; 354 (24): 2531–2541.
32. Shah NP, Kasap C, Weier C, et al. Transient potent BCR-ABL inhibition is sufficient to commit chronic myeloid leukemia cells irreversibly to apoptosis. Cancer Cell 2008; 14 (6): 485-493.
33. Snead JL, O‘Hare T, Adrian LT, et al. Acute dasatinib exposure commits Bcr-Abl-dependent cells to apoptosis. Blood. 2009; 114 (16): 3459–3463.
34. O‘Hare T, Eide CA, Agarwal A, et al. Threshold levels of ABL tyrosine kinase inhibitors retained in chronic myeloid leukemia cells determine their commitment to apoptosis. Cancer Res. 2013; 73 (11): 3356–3370.
35. Nicaise C, Wang X, Roy A, et al. Dasatinib pharmacokinetics and exposure-response relationships to efficacy and safety in patients with chronic myelogenous leukemia in chronic phase (CML-CP). Haematologica. 2008; 93 (S1): Abs. 0559.
36. Wang X, Roy A, Hochhaus A, Kantarjian HM, Chen TT, Shah NP. Differential effects of dosing regimen on the safety and efficacy of dasatinib: retrospective exposure-response analysis of a Phase III study. Clin Pharmacol. 2013; 5: 85–97.
37. Cortes JE, Kantarjian HM, Brümmendorf TH, et al. Safety and efficacy of bosutinib (SKI-606) in chronic phase Philadelphia chromosome-positive chronic myeloid leukemia patients with resistance or intolerance to imatinib. Blood. 2011; 118 (17): 4567–4576.
38. Cortes JE, Kantarjian H, Shah NP, et al. Ponatinib in refractory Philadelphia chromosome-positive leukemias. N Engl J Med. 2012; 367 (22): 2075–2088.
39. Food and Drug Administration. FDA Drug Safety Communication: FDA asks manufacturer of the leukemia drug ICLUSIG (ponatinib) to suspend marketing and sales. 2013. Available at: http: //www.fda.gov/drugs/drugsafety/drugsafetypodcasts/ucm373040.htm
40. Dorer DJ, Knickerbocker RK, Baccarani M, et al. Impact of dose intensity of ponatinib on selected adverse events: Multivariate analyses from a pooled population of clinical trial patients. Leuk Res. 2016; 48: 84–91.
41. Carella AM, Lerma E. Durable responses in chronic myeloid leukemia patients maintained with lower doses of imatinib mesylate after achieving molecular remission. Ann Hematol. 2007; 86 (10): 749–752.
42. Breccia M, Cannella L, Stefanizzi C, et al. Cytogenetic and molecular responses in chronic phase chronic myeloid leukaemia patients receiving low dose of imatinib for intolerance to standard dose. Hematol Oncol. 2010; 28 (2): 89–92.
43. Cervantes F, Correa JG, Pérez I, et al. Imatinib dose reduction in patients with chronic myeloid leukemia in sustained deep molecular response. Ann Hematol. 2017; 96 (1): 81–85.
44. Faber E, Nausová J, Jarosová M, et al. Intermittent dosage of imatinib mesylate in CML patients with a history of significant hematologic toxicity after standard dosing. Leuk Lymphoma. 2006; 47 (6): 1082–1090.
45. Faber E, Divoká M, Skoumalová I, et al. A lower dosage of imatinib is sufficient to maintain undetectable disease in patients with chronic myeloid leukemia with long-term low-grade toxicity of the treatment. Leuk Lymphoma. 2016; 57 (2): 370–375.
46. Russo D, Martinelli G, Malagola M, et al. Effects and outcome of a policy of intermittent imatinib treatment in elderly patients with chronic myeloid leukemia. Blood. 2013; 121 (26): 5138–5144.
47. Malaspina F, Putti MC, Santopietro M, et al. Intermittent imatinib mesylate in children with chronic myeloid leukemia: results and outcome. Blood. 2018; 132: 4256.
48. Malagola M, Efficace F, Polverelli N. First interim report of the Italian Multicentric Phase-III Randomized Study to Optimize TKIs Multiple Approaches – (OPTkIMA) in elderly patients (older than 60 years) with Ph+ chronic myeloid leukemia (CML) and MR3.0 / MR4.0 stable molecular response. Blood. 2018; 132: 4251.
49. Rea D, Cayuela JM, Dulucq S, Etienne G, et al. Molecular responses after switching from a standard-dose twice-daily nilotinib regimen to a reduced-dose once-daily schedule in patients with chronic myeloid leukemia: a real-life observational study (NILO-RED). Blood. 2017; 130 (Suppl 1): 18.
50. Santos FP, Kantarjian H, Fava C, et al. Clinical impact of dose reductions and interruptions of second-generation tyrosine kinase inhibitors in patients with chronic myeloid leukaemia. Br J Haematol. 2010; 150 (3): 303–312. Erratum in: Br J Haematol 2011; 155 (3): 409.
51. Hughes TP, Munhoz E, Aurelio Salvino M, et al. Nilotinib dose-optimization in newly diagnosed chronic myeloid leukaemia in chronic phase: final results from ENESTxtnd. Br J Haematol. 2017; 179 (2): 219–228.
52. Visani G, Breccia M, Gozzini A, et al. Dasatinib, even at low doses, is an effective second-line therapy for chronic myeloid leukemia patients resistant or intolerant to imatinib. Results from a real life-based Italian multicenter retrospective study on 114 patients. Am J Hematol. 2010; 85 (12): 960–963.
53. Itamura H, Kubota Y, Shindo T, et al. Elderly patients with chronic myeloid leukemia benefit from a dasatinib dose as low as 20 mg. Clin Lymphoma Myeloma Leuk. 2017; 17 (6): 370–374.
54. Jamison C, Nelson D, Eren M, et al. What is the optimal dose and schedule for dasatinib in chronic myeloid leukemia: two case reports and review of the literature. Oncol Res. 2016; 23 (1–2): 1–5.
55. Naqvi K, Jabbour E, Skinner J, et al. Early results of lower dose dasatinib (50 mg daily) as frontline therapy for newly diagnosed chronic-phase chronic myeloid leukemia. Cancer. 2018; 124 (13): 2740–2747.
56. Rousselot P, Mollica L, Guerci-Bresler A, et al. Dasatinib daily dose optimization based on residual drug levels resulted in reduced risk of pleural effusions and high molecular response rates: final results of the randomized OPTIM DASATINIB trial. Haematologica. 2014; 99 (Suppl 1): 237; Abstract S678.
57. Mizuta S, Sawa M, Tsurumi H, et al. Plasma concentrations of dasatinib have a clinical impact on the frequency of dasatinib dose reduction and interruption in chronic myeloid leukemia: an analysis of the DARIA 01 study. Int J Clin Oncol. 2018; 23 (5): 980–988.
58. La Rosée P, Martiat P, Leitner A, et al. Improved tolerability by a modified intermittent treatment schedule of dasatinib for patients with chronic myeloid leukemia resistant or intolerant to imatinib. Ann Hematol. 2013; 92 (10): 1345–1350.
59. Imamura M. Efficacy of intermittently administered dasatinib with a reduced dose in an elderly patient with chronic myeloid leukemia. Geriatr Gerontol Int. 2016; 16 (6): 768–770.
60. Loiseau C, Spentchian M, Charbonnier A, et al. Maintenance therapy with dasatinib administered every other day in patients with chronic myeloid leukemia. Hemasphere. 2018; 2 (S1): PS1121.
61. Brummendorf TH, Gambacorti-Passerini C, Hochhaus A, et al. Efficacy and safety following dose reduction of bosutinib or imatinib in patients with newly diagnosed chronic myeloid leukemia: analysis of the phase 3 BFORE trial. Blood. 2018; 132 (Suppl 1): 3005.
62. Cortes J, Lomaia E, Turkina A, et al. Interim analysis from the OPTIC trial, a dose-ranging study of 3 starting doses of ponatinib. Hemasphere. 2020; 4: S1; Abstract S172.
63. Iurlo A, Cattaneo D, Orofino N, Bucelli C, Molica M, Breccia M. Low-dose ponatinib in intolerant chronic myeloid leukemia patients: a safe and effective option. Clin Drug Investig. 2018; 38 (5): 475–476.
64. Tefferi A. Upfront low-dose ponatinib (15 mg/day) for multi-TKI resistant chronic myeloid leukemia. Hematol Oncol. 2018; 36 (4): 718–720.
65. Clark RE, Polydoros F, Apperley JF, et al. De-escalation of tyrosine kinase inhibitor dose in patients with chronic myeloid leukaemia with stable major molecular response (DESTINY): an interim analysis of a non-randomised, phase 2 trial. Lancet Haematol. 2017; 4 (7): e310–e316.
66. Clark RE, Polydoros F, Apperley JF, et al. Final results of the DESTINY study of de-eskalation and stopping treatment in chronic myeloid leukaemia. Hemasphere. 2018; 2 (Suppl 1): Abstract S809.
67. Claudiani S, Apperley J, Khan A, et al. Dose reduction of first and second generation TKIs is effective in the maintenance of major molecular response and may predict successful TFR in CML patients. Blood. 2018; 132 (Suppl 1): 3007.
68. Hochhaus A, Baccarani M, Silver RT, et al. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia. 2020; 34 (4): 966–984.
69. Rosti G, Castagnetti F, Gugliotta G, Baccarani M. Tyrosine kinase inhibitors in chronic myeloid leukaemia: which, when, for whom? Nat Rev Clin Oncol. 2017; 14 (3): 141–154.
70. Faber E, Indrák K. Léčba imatinibem. In: Faber E, Indrák K, et al. Chronická myeloidní leukemie. 1. vydání, Praha, Galén, 2010, 234 s. 93–109.
71. Kantarjian HM, Talpaz M, O‘Brien S, et al. Imatinib mesylate for Philadelphia chromosome-positive, chronic-phase myeloid leukemia after failure of interferon-alpha: follow-up results. Clin Cancer Res. 2002; 8 (7): 2177–2187.
72. O‘Hare T, Walters DK, Stoffregen EP, et al. In vitro activity of Bcr-Abl inhibitors AMN107 and BMS-354825 against clinically relevant imatinib-resistant Abl kinase domain mutants. Cancer Res. 2005; 65 (11): 4500–4505.
73. Kantarjian HM, Giles F, Gattermann N, et al. Nilotinib (formerly AMN107), a highly selective BCR-ABL tyrosine kinase inhibitor, is effective in patients with Philadelphia chromosome-positive chronic myelogenous leukemia in chronic phase following imatinib resistance and intolerance. Blood. 2007; 110 (10): 3540–3546.
74. le Coutre P, Ottmann OG, Giles F, et al. Nilotinib (formerly AMN107), a highly selective BCR-ABL tyrosine kinase inhibitor, is active in patients with imatinib-resistant or -intolerant accelerated-phase chronic myelogenous leukemia. Blood. 2008; 111 (4): 1834–1839.
75. Hochhaus A, Kantarjian HM, Baccarani M, et al. Dasatinib induces notable hematologic and cytogenetic responses in chronic-phase chronic myeloid leukemia after failure of imatinib therapy. Blood. 2007; 109 (6): 2303–2309.
76. Guilhot F, Apperley J, Kim DW, et al. Dasatinib induces significant hematologic and cytogenetic responses in patients with imatinib-resistant or -intolerant chronic myeloid leukemia in accelerated phase. Blood. 2007; 109 (10): 4143–4150.
77. Cortes JE, Rousselot P, Kim DW, et al. Dasatinib induces complete hematologic and cytogenetic responses in patients with imatinib-resistant or -intolerant chronic myeloid leukemia in blast crisis. Blood. 2007; 109 (8): 3207–3213.
78. Cortes JE, Kim DW, Pinilla-Ibarz J, et al. A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N Engl J Med. 2013; 369 (19): 1783–1796.
79. Hochhaus A, Erben P, Ernst T, Mueller MC. Resistance to targeted therapy in chronic myelogenous leukemia. Semin Hematol. 2007; 44 (Suppl 1): S15–S24.
80. Fassoni AC, Baldow C, Roeder I, Glauche I. Reduced tyrosine kinase inhibitor dose is predicted to be as effective as standard dose in chronic myeloid leukemia: a simulation study based on phase III trial data. Haematologica. 2018; 103 (11): 1825–1834.
81. https: //www.clinicaltrials.gov/.
82. http: //www.anzctr.org.au/.
Labels
Haematology Internal medicine Clinical oncologyArticle was published in
Transfusion and Haematology Today
2021 Issue 1
Most read in this issue
- Heparin induced thrombocytopenia
- Blood cell analysers – signifi cance of a dimorphic red blood cell population
- Recommendations for chronic lymphocytic leukaemia diagnosis and therapy 2021
- Novel molecules used in the targeted treatment of acute myeloid leukaemia – adverse reactions, treatment complications and signifi cant drug interactions