#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Uchycení akutní a chronické myeloidní leukemie v NOD scid gamma myši


Authors: M. Čulen 1;  D. Dvořáková 2;  L. Semerád 1,2;  Z. Šustková 1,2;  J. Bouchnerová 1,2;  M. Palacková 1,2;  J. Mayer 1,2,3;  Z. Ráčil 1,2,3
Authors‘ workplace: Department of Internal Medicine, Hematology and Oncology, Faculty of Medicine, Masaryk University, Brno 1;  Department of Internal Medicine, Hematology and Oncology, Faculty Hospital Brno, Brno 2;  Masaryk University, Central European Institute of Technology, Brno 3
Published in: Transfuze Hematol. dnes,21, 2015, No. 1, p. 6-12.
Category: Comprehensive Reports, Original Papers, Case Reports

Overview

Imunodeficitní myši představují zavedený zvířecí model pro xeno-transplantační studie lidských leukemií, který se může použít jako samostatná in vivo metoda pro studium geneze a progrese leukemie, anebo může být po-užit pro potvrzení schopnosti transplantovaných buněk rozvinout leukemii. Tento myší model byl v průběhu času předmětem mnoha modifikací, a tak je v současné době přihojení transplantovaných buněk u akutní a chronické myeloidní leukemie zpravidla dosažitelné, i když ne u všech leukemických vzorků. Tato přehledová práce pojednává o xeno-trasplantačních experimentech u akutní a chronické myeloidní leukemie, ve kterých byl použit myší kmen NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ představující v současnosti standardní animální model. Cílem práce je poskytnou základní náhled do problematiky myších modelů myeloidních leukemií člověka a představit hlavní kritické body při provádění těchto experimentů.

Klíčová slova:
xenograft, NGS myš, AML, CML


Sources

1. Kamel-Reid S, Letarte M, Sirard C, et al. A model of human acute lymphoblastic leukemia in immune-deficient scid mice. Science 1989; 246: 1597–1600.

2. Shultz LD, Schweitzer PA, Christianson SW, et al. Multiple defects in innate and adaptive immunologic function in nod/ltsz-scid mice. J Immunol 1995; 154: 180–191.

3. Agliano A, Martin-Padura I, Mancuso P, et al. Human acute leukemia cells injected in nod/ltsz-scid/il-2rgamma null mice generate a faster and more efficient disease compared to other nod/scid-related strains. Int J Cancer 2008; 123: 2222–2227.

4. Risueno RM, Campbell CJV, Dingwall S, et al. Identification of t-lymphocytic leukemia-initiating stem cells residing in a small subset of patients with acute myeloid leukemic disease. Blood 2011; 117: 7112–7120.

5. Sanchez PV, Perry RL, Sarry JE, et al. A robust xenotransplantation model for acute myeloid leukemia. Leukemia 2009; 23: 2109–2117.

6. Sarry JE, Murphy K, Perry R, et al. Human acute myelogenous leukemia stem cells are rare and heterogeneous when assayed in nod/scid/il2rgammac-deficient mice. J Clin Invest 2011; 121: 384–395.

7. Terpstra W, Prins A, Ploemacher RE, et al. Long-term leukemia-initiating capacity of a cd34-subpopulation of acute myeloid leukemia. Blood 1996; 87: 2187–2194.

8. Taussig DC, Vargaftig J, Miraki-Moud F, et al. Leukemia-initiating cells from some acute myeloid leukemia patients with mutated nucleophosmin reside in the cd34(-) fraction. Blood 2010; 115: 1976–1984.

9. Dvorakova D, Racil Z, Borsky M, et al. Clonal heterogeneity in patients with cytogenetically normal acute myeloid leukemia with NPM1 mutations. Leukemia Lymphoma 2013; 54: 1056–1060.

10. Falini B, Mecucci C, Tiacci E, et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med 2005; 352: 254–266.

11. Chu S, McDonald T, Lin A, et al. Persistence of leukemia stem cells in chronic myelogenous leukemia patients in prolonged remission with imatinib treatment. Blood 2011; 118: 5565–5572.

12. Graham SM, Jorgensen HG, Allan E, et al. Primitive, quiescent, philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to sti571 in vitro. Blood 2002; 99: 319–325.

13. Bhatia R, Holtz M, Niu N, et al. Persistence of malignant hematopoietic progenitors in chronic myelogenous leukemia patients in complete cytogenetic remission following imatinib mesylate treatment. Blood 2003; 101: 4701–4707.

14. Malaise M, Neumeier M, Botteron C, et al. Stable and reproducible engraftment of primary adult and pediatric acute myeloid leukemia in nsg mice. Leukemia 2011; 25: 1635–1639.

15. Woiterski J, Ebinger M, Witte KE, et al. Engraftment of low numbers of pediatric acute lymphoid and myeloid leukemias into nod/scid/il2rcgammanull mice reflects individual leukemogenecity and highly correlates with clinical outcome. Int J Cancer 2013; 133: 1547–1556.

16. Mitchell A, Chen WC, McLeod J, et al. Leukemic engraftment in nod.Scid mice is correlated with clinical parameters and predicts outcome in human aml. Blood 2013; 122: 50.

17. Pearce DJ, Taussig D, Zibara K, et al. Aml engraftment in the nod/scid assay reflects the outcome of aml: Implications for our understanding of the heterogeneity of aml. Blood 2006; 107: 1166–1173.

18. Dazzi F, Capelli D, Hasserjian R, et al. The kinetics and extent of engraftment of chronic myelogenous leukemia cells in non-obese diabetic/severe combined immunodeficiency mice reflect the phase of the donor’s disease: An in vivo model of chronic myelogenous leukemia biology. Blood 1998; 92: 1390–1396.

19. Herrmann H, Sadovnik I, Cerny-Reiterer S, et al. Dipeptidylpeptidase iv (cd26) defines leukemic stem cells (lsc) in chronic myeloid leukemia. Blood 2014; 123: 3951–3962.

20. Chen M, Gallipoli P, DeGeer D, et al. Targeting primitive chronic myeloid leukemia cells by effective inhibition of a new ahi-1-bcr-abl-jak2 complex. J Natl Cancer Inst 2013; 105: 405–423.

21. McDermott SP, Eppert K, Lechman ER, Doedens M, Dick JE. Comparison of human cord blood engraftment between immunocompromised mouse strains. Blood 2010; 116: 193–200.

22. Bueno C, Montes R, de la Cueva T, Gutierrez-Aranda I, Menendez P. Intra-bone marrow transplantation of human cd34(+) cells into nod/ltsz-scid il-2rgamma(null) mice permits multilineage engraftment without previous irradiation. Cytotherapy 2010; 12: 45–49.

23. Watanabe S, Ohta S, Yajima M, et al. Humanized nod/scid/il2rγnull mice transplanted with hematopoietic stem cells under nonmyeloablative conditions show prolonged life spans and allow detailed analysis of human immunodeficiency virus type 1 pathogenesis. J Virol 2007; 81: 13259–13264.

24. Taussig DC, Miraki-Moud F, Anjos-Afonso F, et al. Anti-cd38 antibody–mediated clearance of human repopulating cells masks the heterogeneity of leukemia-initiating cells. Blood 2008; 112: 568–575.

25. Notta F, Doulatov S, Dick JE. Engraftment of human hematopoietic stem cells is more efficient in female nod/scid/il-2rgc-null recipients. Blood 2010; 115: 3704–3707.

26. Ballen KK, Valinski H, Greiner D, et al. Variables to predict engraftment of umbilical cord blood into immunodeficient mice: Usefulness of the non-obese diabetic–severe combined immunodeficient assay. Brit J Haematol 2001; 114: 211–218.

27. Herrmann H, Kneidinger M, Cerny-Reiterer S, et al. The hsp32 inhibitors sma-znpp and peg-znpp exert major growth-inhibitory effects on d34+/cd38+ and cd34+/cd38- aml progenitor cells. Curr Cancer Drug Targets 2012; 12: 51–63.

28. Eisterer W, Jiang X, Christ O, et al. Different subsets of primary chronic myeloid leukemia stem cells engraft immunodeficient mice and produce a model of the human disease. Leukemia 2005; 19: 435–441.

29. Tanizaki R, Nomura Y, Miyata Y, et al. Irrespective of cd34 expression, lineage-committed cell fraction reconstitutes and re-establishes transformed philadelphia chromosome-positive leukemia in nod / scid / il-2rγc−/−mice. Cancer Sci 2010; 101: 631–638.

30. Feuring-Buske M, Gerhard B, Cashman J, et al. Improved engraftment of human acute myeloid leukemia progenitor cells in beta 2-microglobulin-deficient nod/scid mice and in nod/scid mice transgenic for human growth factors. Leukemia 2003; 17: 760–763.

31. Terpstra W, Prins A, Visser T, et al. Conditions for engraftment of human acute myeloid leukemia (aml) in scid mice. Leukemia 1995; 9: 1573–1577.

32. Wunderlich M, Chou FS, Link KA, et al. Aml xenograft efficiency is significantly improved in nod/scid-il2rg mice constitutively expressing human scf, gm-csf and il-3. Leukemia 2010; 24: 1785–1788.

33. Klco JM, Spencer DH, Miller CA, et al. Functional heterogeneity of genetically defined subclones in acute myeloid leukemia. Cancer Cell 2014; 25: 379–392.

34. Vaiselbuh SR, Edelman M, Lipton JM, Liu JM. Ectopic human mesenchymal stem cell-coated scaffolds in nod/scid mice: An in vivo model of the leukemia niche. Tissue Eng Part C Methods 2010; 16: 1523–1531.

35. Groen RWJ, Jaques J, Yuan H, et al. Mouse versus human extrinsic cues dictate transformation potential in bcr-abl/bmi1-induced leukemia in humanized xenograft models. Blood 2013; 122: 515.

Labels
Haematology Internal medicine Clinical oncology

Article was published in

Transfusion and Haematology Today

Issue 1

2015 Issue 1

Most read in this issue
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#