#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Novel aproaches in therapy of low-risk patients with myelodysplastic syndrome


Authors: A. Jonášová
Authors‘ workplace: I. interní klinika 1. lékařské fakulty UK a VFN, Praha
Published in: Transfuze Hematol. dnes,15, 2009, No. 2, p. 114-120.
Category: Comprehensive Reports, Original Papers, Case Reports

Overview

Myelodysplastic syndrome is one of the most frequent haematological diseases. Its incidence is on the rise due to the increasing life expectancy of the population and also probably due to the increasing exposure to various toxic substances. Treatment of this disease, though, remains difficult. In terms of therapy, we most frequently divide MDS into low and very high-risk patients. In our review, we deal with some of the novel therapeutic approaches and preparations used in the low risk patients, also taking into account that these should become available to our patients in the foreseeable future. We first focus on growth factors, especially erythropoiesis stimulating proteins, and the fundamentals of treatment based on current clinical trials and new preparations. We then present an overview of chelation therapy, including new guidelines and a brief summary of our own results and experience. This is followed by information regarding completely novel and successful therapeutic approaches, namely the use of immunomodulatory and demethylation therapy, and a description of these preparations. Last but not least, we will direct our attention to immunosuppressive therapy, an already well-known modality, yet with clearer criteria of patient selection.

Key words:
myelodysplastic syndrome, growth factors, chelation therapy, hypomethylation agents, immunomodulation, immunosuppression


Sources

1. List AF. New approaches to the treatment of myelodysplasia. Oncologist Review 2002; 7 (Suppl 1): 39–49.

2. Bennett JM, Catovsky D, Daniel MT, et al. Proposals for the classification of the myelodysplastic syndromes. Br J Haematol 1982; 51: 189–199.

3. Harris NL, Jaffe ES, Diebold J, et al. World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues: report of the Clinical Advisory Committee meeting-Airlie House, Virginia, November 1997. J Clin Oncol 1999; 17: 3835–3849.

4. Greenberg P, Cox C, LeBeau MM, Fenaux P, et al. International Scoring System for Evaluating Prognosis in Myelodysplastic Syndromes. Blood 1997; 89: 2079–2088 (erratum, Blood 1998; 91: 1100).

5. Malcovati L, Germing U, Kuendgen A, et al. Time-dependent prognostic scoring system for predicting survival and leukemic evolution in myelodysplastic syndromes. J Clin Oncol 2007; 25: 3503–3510.

6. Park S, Grabar S, Kelaidi C, et al; for the GFM group (Groupe Francophone des Myélodysplasies). Predictive factors of response and survival in myelodysplastic syndrome treated with erythropoietin and G-CSF: the GFM experience. Blood 2008; 111: 574–582.

7. Hellström-Lindberg E, Gulbrandsen N, Lindberg G, et al. Scandinavian MDS Group. A validated decision model for treating the anaemia of myelodysplastic syndromes with erythropoietin + granulocyte colony-stimulating factor: significant effects on quality of life. Br J Haematol 2003; 120: 1037–1046.

8. Thompson JA, Gilliland DG, Prchal JT, et al. Effect of recombinant human erythropoietin combined with granulocyte/ macrophage colony-stimulating factor in the treatment of patients with myelodysplastic syndrome. GM/EPO MDS Study Group. Blood 2000; 95: 1175–1179.

9. Hellström-Lindberg E, Negrin R, Greenberg P, et al. Erythroid response to treatment with G-CSF plus erythropoietin for the anaemia of patients with myelodysplastic syndromes: proposal for a predictive model. Br J Haematol 1997; 99: 344–351.

10. Mundle S, Lefebvre P, Duh MS, et al. Treatment of MDS related transfusion-dependent anemia with epoetin alfa: A perspective meta-analysis. Blood 2007; 110 (Suppl 1): Abstract 1471.

11. Terpos E, Mougiou A, Kouraklis A, et al. For The Greek MDS Study Group. Prolonged administration of erythropoietin increases erythroid response rate in myelodysplastic syndromes: a phase II trial in 281 patients. Br J Haematol 2002; 118: 174–180.

12. Hellström-Lindberg E, Ahlgren T, Beguin Y, et al. Treatment of anemia in myelodysplastic syndromes with granulocyte colony-stimulating factor plus erythropoietin: results from a randomized phase II study and long-term follow-up of 71 patients. Blood 1998; 92: 68–75.

13. Balleari E, Rossi E, Clavio M, et al. Erythropoietin plus granulocyte colony-stimulating factor is better than erythropoietin alone to treat anemia in low-risk myelodysplastic syndromes: results from a randomized single-centre study. Ann Hematol 2006; 85: 174–180.

14. Casadevall N, Durieux P, Dubois S, et al. Health, economic, and quality-of-life effects of erythropoietin and granulocyte colony-stimulating factor for the treatment of myelodysplastic syndromes: a randomized, controlled trial. Blood 2004; 104: 321–327.

15. Tehranchi R, Fadeel B, Hellstrom-Lindberg E, et al. Granulocyte colony-stimulating factor inhibits spontaneous cytochrome c release and mitochondria-dependent apoptosis of myelodysplastic syndrome hematopoietic progenitors. Blood 2003; 101: 1080–1086.

16. Jadersten M, Montgomery SM, Astermark J, et al. Treatment of anemia in myelodysplastic syndromes with granulocyte colony-stimulating factor and erythropoietin: response and impact on survival in a long-term follow-up of 129 patients. Blood 2003; 102: 184–185.

17. Jädersten M, Malcovati L, Cazzola M, et al. Treatment with Erythropoietin and G-CSF Improves Survival in MDS Patients with Low Transfusion Need. Blood 2006; 108(Suppl 1): Abstract 521.

18. Park S, Grabar C, Fenaux F, et al. Has treatment with epo+/- G-CSF an impact on progression to AML and survival in low/int-1-risk MDS? A comparison between french-epo patients and the Imraw databáze. Haematologica 2007; 92(Suppl 1): Abstract 427.

19. Musto P, Lanza F, Balleari E, et al. Darbepoetin alpha for the treatment of anaemia in low-intermediate risk myelodysplastic syndromes. Br J Haematol 2005; 128: 204–209.

20. Mannone L, Gardin C, Fenaux P, et al. Groupe Francais des Myelodysplasies. High-dose darbepoetin alpha in the treatment of anaemia of lower risk myelodysplastic syndrome results of a phase II study. Br J Haematol 2006; 133: 513–519.

21. Oliva E, et al. Darbopoetin for the treatment of anemia of MDS: Efficacy and improvements in quality of life. Blood 2006; 108(Suppl 1): Abstract 845.

22. Stasi R, Abruzzese E, Lanzetta G, Terzoli E, Amadori S, et al. Darbepoetin alfa for the treatment of anemic patients with low- and intermediate-1-risk myelodysplastic syndromes. Ann Oncol 2005 Dec; 16(12): 1921–7.

23. Kadia T, Kantarjian H, Verstovsek S, et al. Treatment of Myelodysplastic syndrome (MDS) with cytokine immunotherapy for low-risk MDS. Blood 2007; 110 (issue 11): Abstract 1463.

24. Montero A, et al. Phase II study of low-dose interleukin-11 in patients with myelodysplastic syndrome. Leuk Lymphoma 2006; 47: 2049–54.

25. Kantarjian H, et al. Phase1/2 study of AMG 531 in trombocytopenic patients with low-risk MDS. Blood 2007; 110(issue 11): Abstract 250.

26. Malcovati L, et al. Prognostic factor and life expetancy in MDS classified according WHO criteria: a basis for clinical decision making. J Clin Oncol 2005; 23: 7594–7603.

27. Jensen P, Heickendorff L, Pedersen B, et al. The effect of iron chelation on haemopoiesis in MDS patients with transfusional iron overload. Br J Haematol 1996; 94: 288–299.

28. Jensen PD, Jensen IM, Ellegaard J, et al. Desferrioxamine treatment reduces blood transfusion requirements in patients with myelodysplastic syndrome. Br J Haematol 1992; 80: 121–124.

29. Malcovati L, Della Porta MG, Cazzola M, et al. Predicting survival and leukemic evolution in patients with MDS, Haematologica 2006; 91: 1588–1590.

30. Armand P, KimHT, Aleza EP, et al. Prognostic impact of elevated pretransplantation serum ferritin in patients undergoing myeloablative stem cell transplantation. Blood 2007; 109: 4586–4588.

31. Leith H. Improving clinical outcome in patients with myelodysplastic syndrome and iron overload using iron chelation therapy. Leuk Res 2007; 31(Suppl 3): 7–9.

32. Leith H, Wong D, Leger Ch, et al. Improved Leukemia-Free and Overall Survival in Patients with Myelodysplastic Syndrome Receiving Iron Chelation Therapy: A Subgroup Analysis. Blood 2007; 110(issue 11): Abstract 1469.

33. Rose Ch, Brechignac S, Fenaux P, et al. Positive Impact of Iron Chelation Therapy (CT) on Survival in Regularly Transfused MDS Patients. A prospective analysis by the GFM. Blood 2007; 110 (issue 11): Abstract 249.

34. Gattermann N. Gudelines on iron chelation therapy in patients with myelodysplastic syndromes and transfusional overload. Leuk Res 2007; 31(Suppl 3): 10–15.

35. Raza A, Meyer P, Dutt D, Zeldis J, et al. Thalidomide produces transfusion independence in long-standing refractory anemias of patients with myelodysplastic syndromes. Blood 2001; 98: 958–65.

36. Tamburini J, Elie C, Vassilief D, (Intr. by Pierre Fenaux). Low doses of thalidomide in low risk MDS with transfusion-dependant anemia: The GFM THAL-SMD-200 Trial Blood 2006; 108(issue 11): Abstract 2673.

37. Musto P, Falcone A, Sanpaolo G, et al. Combination of erythropoietin and thalidomide for the treatment of anemia in patients with myelodysplastic syndromes. Leuk Res 2006; 30: 385–8.

38. List A. Active treatment-improving outcomes in 5q-patients. (MDS-001, 002, 003, PK study). Leukemia research 2007; 31(Suppl 1): Abstract 15.

39. Giagounidis AA, Haase S, Platzbecker U, et al. Blood 2007; Vol 110 (issue 11): Abstract 1460.

40. Ades L, Boehrer S, Fenaux P, et al. Efficacy and safety of lenalidomide in intermediate-2-or high risk myelodysplastic syndromes (MDS) with 5q deletion: Results of a phase II study. Blood 2008; Nov 5.(Epub ahead of print).

41. Raza A, Reeves J, List A, et al. Phase 2 study of lenalidomide in transfusion-dependent, low-risk, and intermediate-1 risk myelodysplastic syndromes with karyotypes other than deletion 5q. Blood 2008; 111: 86–93.

42. Sekeres MA, Maciejewski JP, Giagounidis AA, et al. Relationship of Treatment-Related Cytopenias and Response to Lenalidomide in Patients With Lower-Risk Myelodysplastic Syndromes. J Clin Oncol 2008; 26(36): 5943–9.

43. Silverman L, Demakos E, Peterson B, et al. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J Clin Oncol 2002; 20: 2429–40.

44. Gryn J, Zeigler ZR, Shadduck RK, Lister J, et al. Treatment of myelodysplastic syndromes with 5-azacytidine. Leuk Res 2002; 26: 893–7.

45. Rüter B, Wijermans P, Claus R, et al. Preferential cytogenetic response to continuous intravenous low-dose decitabine (DAC) administration in myelodysplastic syndrome with monosomy 7. Blood 2007; 110: 1080–2.

46. Mufti GJ, Fenaux P, Hellstrom-Lindberg E, et al. Treatment of highrisk MDS patients (pts) with -7/del(7q) with azacitidine (AZA) versus conventional care regimens (CCR): effects on overall survival (OS). J Clin Oncol 2008; 26: Abstract 7033.

47. Yamamura K, Ohishi K, Katayama N, et al. Pleiotropic role of histone deacetylases in the regulation of human adult erythropoiesis. Br J Haematol 2006; 135: 242–53.

48. Cimino G, Lo-Coco F, Fenu S, et al. Sequential valproic acid/all-trans retinoic acid treatment reprograms differentiation in refractory and high-risk acute myeloid leukemia. Cancer Res 2006; 66: 8903–11.

49. Kuendgen A, Schmid M, Gattermann N, et al. The histone deacetylase (HDAC) inhibitor valproic acid as monotherapy or in combination with all-trans retinoic acid in patients with acute myeloid leukemia. Cancer 2006; 106:112–9.

50. Jonášova A, Neuwirtová R, Čermák J, et al. Cyclosporin A therapy in hypoplastic MDS patients and certain refractory anaemias without hypoplastic bone marrow. Br J Haematol 1998; 100: 304–9.

51. Killick S, Mufti G, Cavenagh J, et al. A pilot study of antithymocyte globulin (ATG) in the treatment of patients with ‘low-risk’ myelodysplasia. Br J Haematol 2003; 120: 679–84.

52. Shimamoto T, Tohyama K, Okamoto T, et al. Cyclosporin A therapy for patients with myelodysplastic syndrome: multicenter pilot studies in Japan. Leuk Res 2003; 27: 783–8.

53. Molldrem J, Jiang Y, Barrett A, et al. Haematological response of patients with myelodysplastic syndrome to antithymocyte globulin is associated with a loss of lymphocyte-mediated inhibition of CFU-GM and alterations in T-cell receptor Vbeta profiles. Br J Haematol 1998; 102: 1314–22.

54. Sloand E, Mainwaring L, Barrett A, et al. Preferential suppression of trisomy 8 compared with normal hematopoietic cell growth by autologous lymphocytes in patients with trisomy 8 myelodysplastic syndrome. Blood 2005; 106: 841–51.

55. Saunthararajah Y, Nakamura R, Barrett A, et al. HLA-DR15 (DR2) is overrepresented in myelodysplastic syndrome and aplastic anemia and predicts a response to immunosuppression in myelodysplastic syndrome. Blood 2002; 100: 1570–4.

56. Barrett A, Sloand E, Young N. Determining which patients with myelodysplastic syndrome will respond to immunosuppressive treatment. Haematologica 2006; 91: 583–4.

Labels
Haematology Internal medicine Clinical oncology
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#