RELIABILITA MERANÍ ZAŤAŽENIA NOHY PRI CHÔDZI
Authors:
Lucia Bizovská; Zdenek Svoboda; Miroslav Janura
Authors‘ workplace:
Katedra přírodních věd v kinantropologii, Fakulta tělesné kultury, Univerzita Palackého v Olomouci, Olomouc, Česká republika
Published in:
Lékař a technika - Clinician and Technology No. 3, 2015, 45, 93-97
Category:
Original research
Overview
Foot loading assessment is a topical measurement used by podiatrists. During the measurement, force and pressure plates are mostly used. The aim of this study was to examine reliability of parameters computed from the force and pressure plates during the stance phase of a gait cycle. Ten healthy young men (23.6 ± 2.9 years) participated in this study. Participants walked barefoot with their preferred walking speed 8 times, 4 times on a walkway with two installed force plates. Other half of the trials was measured on the walkway with installed pressure plate. The reliability was computed for force, pressure, temporal and impulse characteristics of a stance phase of a gait cycle. The results showed that parameters from the force plates had medium to high reliability, with the exception of the temporal characteristics of anterior-posterior component of the ground reaction force. The results for pressure parameters showed that medium to high reliability was found under the areas where the pressure is normally higher (for example second metatarsus, lateral and medial heel) and low reliability was found under less pressed areas (fifth metatarsus, midfoot).
Keywords:
gait cycle, stance phase, reliability, force plate, pressure plate
Sources
[1] Rosenbaum D., Becker H.-P. Plantar pressure distribution measurements. Technical background and clinical applications. Foot and Ankle Surgery, 1997, vol 3, p. 1-14.
[2] Bacarin T. A., Sacco I. C. N., Hennig E. M. Plantar pressure distribution patterns during gait in diabetic neuropathz patients with a historz of foot ulcers. Clinics, 2009, vol. 64, no. 2, p. 113-120.
[3] Akashi P. M. H., Sacco I. C. N., Watari R., Hennig E. M. The effect of diabetic neuropathy and previous foot ulceration in EMG and ground reaction forces during gait. Clinical Biomechanics, 2008, vol. 23, no. 5, p. 584-592.
[4] Mueller M. J., Minor S. D., Sahrmann S. A., Schaaf J. A., Strube M. J. Differences in the gait characteristics of patients with diabetes and peripheral neuropathy compared with age-matched controls. Physical Therapy 1994, vol. 74, p. 299-308.
[5] Hendl J. Přehled statistických metod : analýza a metaanalýza dat. Praha : Portál, 2012. 734 s.
[6] Henriksen M., Luind H., Moe-Nilssen R., Bliddal H., Danneskiod-Samsoe B. Test-retest reliability of trunk accelerometric gait analysis. Gait and Posture 2004, vol 19, no. 3, p. 288-297.
[7] Shrout P. E., Fleiss J. L. Intraclass correlations: Uses in assessing rater reliability. Psychological Bulletin 1979, vol. 86, no. 2, p. 420-428.
[8] Vincent W. J., Weir J. P. Statistics in kinesiology. Champaign, Ill. : Human Kinetics, 2012, 378 s.
[9] Gurney J. K., Kersting U. G., Rosenbaum D. Between-day reliability of repeated plantar pressure distribution measurements in a normal population. Gait and Posture 2008, vol. 27, no. 4, p. 706-709.
[10] Cousins S. D., Morrison S. C., Drechsler W. I. The reliability of plantar pressure assessment during barefoot level walking in children aged 7-11 years. Journal of Foot and Ankle Research 2012, vol. 5:8.
[11] Godi M., Turcato A. M., Schieppati M., Nardone A. Test-retest reliability of an insole plantar pressure system to assess gait along linear and curved trajectories. Journal of NeuroEngineering and Rehabilitation 2014, vol. 11:95.
[12] Fleiss, J. L. Design and analysis of clinical experiments. New York : Wiley, 1986. 432 s.
[13] Reed L. F., Urry S. R., Wearing S. C. Reliability of spatiotemporal and kinetic gait parameters determined by a new instrumented treadmill system. BMC Musculoskeletal Disorders 2013, vol 14:249.
[14] Faude O., Donath L., Roth R., Fricker L., Zahner L. Reliability of gait parameters during treadmill walking in community-dwelling healthy seniors. Gait and Posture 2012, vol. 36, no. 3, p. 444-448.
[15] Vaverka F., Elfmark M., Svoboda Z., Janura M. System of gait analysis based on ground reaction force assessment Acta Gymnica 2015. In press.
Labels
BiomedicineArticle was published in
The Clinician and Technology Journal
2015 Issue 3
Most read in this issue
- RELIABILITA MERANÍ ZAŤAŽENIA NOHY PRI CHÔDZI
- MONITORING THE OCCURRENCE OF THE AXIAL ORGAN DEFECTS IN DENTAL HYGIENE STUDENTS
- COMPARISON OF DOSE CALCULATION ALGORITHMS FOR LEKSELL GAMMA KNIFE PERFEXION USING MONTE CARLO VOXEL PHANTOMS
- FEASIBILITY OF RADIOIODINE DOSIMETRY USING A SMALL FIELD OF VIEW GAMMACAMERA; PILOT STUDY