Stress fractures in runners and their treatment
Authors:
Cahelová K.; Smékal D.; Hanzlíková I.
Authors‘ workplace:
Katedra fyzioterapie, Fakulta tělesné kultury, Univerzita Palackého v Olomouci
Published in:
Rehabil. fyz. Lék., 31, 2024, No. 2, pp. 66-74.
Category:
doi:
https://doi.org/10.48095/ccrhfl 202466
Overview
Summary: Stress fractures are injuries that result from overuse. They most commonly occur in the lower extremities as a consequence of repetitive impacts and the transmission of large forces to the bones of the lower limbs. Endurance runners are at the highest risk of developing stress fractures, but they can also affect other athletes such as sprinters, basketball players, or gymnasts. They are also prevalent among soldiers. Early diagnosis and proper treatment of stress fractures prevent the progression of this injury into a complete fracture or avascular necrosis. Therefore, knowledge of this issue is important for both medical professionals and athletes and their coaches. The goal of this article is to summarize current knowledge regarding stress fractures in runners. Individual sections focus on the pathophysiology of stress fracture development and the risk factors contributing to their occurrence. The main focus is given to the diagnosis, classification, and treatment of this injury.
Keywords:
classification – diagnosis – treatment – pathophysiology – risk factors – overload injury – stress fracture – runners
Sources
1. Wright AA, Taylor JB, Ford KR et al. Risk factors associated with lower extremity stress fractures in runners: a systematic review with meta-analy- sis. Br J Sports Med 2015; 49 (23): 1517–1523. doi: 10.1136/BJSPORTS-2015-094828.
2. O’Leary TJ, Rice HM, Greeves JP. Biomechanical basis of predicting and preventing lower limb stress fractures during arduous training. Curr Osteoporos Rep 2021; 19 (3): 308–317. doi: 10.1007/s11914-021-00671-1.
3. Kahanov L, Eberman LE, Games KE et al. Diag- nosis, treatment, and rehabilitation of stress fractures in the lower extremity in runners. Open Access J Sports Med 2015; 6: 87–95. doi: 10.2147/OAJSM.S39512.
4. Warden SJ, Davis IS, Fredericson M. Management and prevention of bone stress injuries in long-distance runners. J Orthop Sports Phys Ther 2014; 44 (10): 749–765. doi: 10.2519/JOSPT.2014.5334.
5. Warden SJ, Edwards WB, Willy RW. Preventing bone stress injuries in runners with optimal workload. Curr Osteoporos Rep 2021; 19 (3): 298–307. doi: 10.1007/s11914-021-00666-y.
6. Matcuk GR Jr, Mahanty SR, Skalski MR et al. Stress fractures: pathophysiology, clinical presentation, imaging features, and treatment options. Emerg Radiol 2016; 23 (4): 365–375. doi: 10.1007/s10140-016-1390-5.
7. Stanitski CL, McMaster JH, Scranton PE. On the nature of stress fractures. Am J Sports Med 1978; 6 (6): 391–396. doi: 10.1177/036354657800 600615.
8. Li GP, Zhang SD, Chen G et al. Radiographic and histologic analyses of stress fracture in rabbit tibias. Am J Sports Med 1985; 13 (5): 285–294. doi: 10.1177/036354658501300501.
9. Fredericson M, Jennings F, Beaulieu C et al. Stress fractures in athletes. Top Magn Reson Imaging 2006; 17 (5): 309–325. doi: 10.1097/RMR. 0b013e3180421c8c.
10. Beck B, Drysdale L. Risk factors, diagnosis and management of bone stress injuries in adolescent athletes: a narrative review. Sports 2021; 9 (4): 52. doi: 10.3390/sports9040052.
11. Warden SJ, Burr DB, Brukner PD. Stress fractures: pathophysiology, epidemiology, and risk factors. Curr Osteoporos Rep 2006; 4 (3): 103–109. doi: 10.1007/S11914-996-0029-Y.
12. Burke A, Dillon S, O’Connor S et al. Risk factors for injuries in runners: a systematic review of foot strike technique and its classification at impact. Orthop J Sports Med 2021; 9 (9): 23259671211020283. doi: 10.1177/23 259671211020283.
13. Abbott A, Bird ML, Wild E et al. Part I: epidemiology and risk factors for stress fractures in female athletes. Phys Sportsmed 2020; 48 (1): 17–24. doi: 10.1080/00913847.2019.1632158.
14. Beck TJ, Ruff CB, Shaffer RA et al. Stress fracture in military recruits: gender differences in muscle and bone susceptibility factors. Bone 2000; 27 (3): 437–444. doi: 10.1016/s87 56-3282 (00) 00342-2.
15. Barrack MT, Gibbs JC, De Souza MJ et al. Higher incidence of bone stress injuries with increasing female athlete triad-related risk factors. Am J Sports Med 2014; 42 (4): 949–958. doi: 10.1177/0363546513520295.
16. Mountjoy M, Sundgot-Borgen J, Burke L et al. The IOC consensus statement: beyond the female athlete triad – relative energy deficiency in sport (RED-S). Br J Sports Med 2014; 48 (7): 491–497. doi: 10.1136/bjsports-2014-093502.
17. Pegrum J, Dixit V, Padhiar N et al. The pathophysiology, diagnosis, and management of foot stress fractures. Phys Sportsmed 2014; 42 (4): 87–99. doi: 10.3810/PSM.2014.11.2095.
18. Tenforde AS, Fredericson M, Sayres LC et al. Identifying sex-specific risk factors for low bone mineral density in adolescent runners. Am J Sports Med 2015; 43 (6): 1494–1504. doi: 10.1177/0363546515572142.
19. Ackerman KE, Sokoloff NC, De Nardo Maffazioli D et al. Fractures in relation to menstrual status and bone parameters in young athletes. Med Sci Sports Exerc 2015; 47 (8): 1577–1586. doi: 10.1249/MSS.0000000000000574.
20. Pegrum J, Crisp T, Padhiar N et al. The pathophysiology, diagnosis, and management of stress fractures in postmenopausal women. Phys Sportsmed 2012; 40 (3): 32–42. doi: 10.3810/psm.2012.09.1978.
21. Hulme A, Nielsen RO, Timpka T et al. Risk and protective factors for middle- and long-distance running-related injury. Sports Med 2017; 47 (5): 869–886. doi: 10.1007/s40279-016- 0636-4.
22. Winters M. The diagnosis and management of medial tibial stress syndrome: an evidence update, Unfallchirurg 2020; 123 (Suppl 1): 15–19. doi: 10.1007/s00113-019-0667-z.
23. Behrens SB, Deren ME, Matson A et al. Stress fractures of the pelvis and legs in athletes: a review. Sports Health 2013; 5 (2): 165–174. doi: 10.1177/1941738112467423.
24. Delahunt E, Kennelly C, McEntee BL et al. The thigh adductor squeeze test: 45° of hip flexion as the optimal test position for eliciting adductor muscle activity and maximum pressure values. Man Ther 2011; 16 (5): 476–480. doi: 10.1016/j.math.2011.02.014.
25. Wright AA, Hegedus EJ, Lenchik L et al. Diagnostic accuracy of various imaging modalities for suspected lower extremity stress fractures: a systematic review with evidence-based recommendations for clinical practice. Am J Sports Med 2016; 44 (1): 255–263. doi: 10.1177/036 3546515574066.
26. Wall J, Feller JF. Imaging of stress fractures in runners. Clin Sports Med 2006; 25 (4): 781–802. doi: 10.1016/j.csm.2006.06.003.
27. Greaser MC. Foot and ankle stress fractures in athletes. Orthop Clin North Am 2016; 47 (4): 809–822. doi: 10.1016/j.ocl.2016.05.016.
28. Zbojniewicz AM. Impingement syndromes of the ankle and hindfoot. Pediatr Radiol 2019; 49 (12): 1691–1701. doi: 10.1007/s00 247-019-04459-5.
29. Vij N, Kaley HN, Robinson CL et al. Clinical results following conservative management of tarsal tunnel syndrome compared with surgical treatment: a systematic review. Orthop Rev 2022; 14 (3): 37539. doi: 10.52965/00 1c.37539.
30. Feldman JJ, Bowman EN, Phillips BB et al. Tibial stress fractures in athletes. Orthop Clin North Am 2016; 47 (4): 733–741. doi: 10.1016/ j.ocl.2016.05.015.
31. Velasco TO, Leggit JC. Chronic exertional compartment syndrome: a clinical update. Curr Sports Med Rep 2020; 19 (9): 347–352. doi: 10.1249/JSR.0000000000000747.
32. Vajapey S, Miller TL. Evaluation, diagnosis, and treatment of chronic exertional compartment syndrome: a review of current literature. Phys Sportsmed 2017; 45 (4): 391–398. doi: 10.1080/00913847.2017.1384289.
33. Boden BP, Osbahr DC, Jimenez C et al. Low-risk stress fractures. Am J Sports Med 2001; 29 (1): 100–111. doi: 10.1177/0363546501029 0010201.
34. Song SH, Koo JH. Bone stress injuries in runners: a review for raising interest in stress fractures in Korea. J Korean Med Sci 2020; 35 (8): e28. doi: 10.3346/jkms.2020.35.e38.
35. Hoenig T, Eissele J, Strahl A et al. Return to sport following low-risk and high--risk bone stress injuries: a systematic review and meta-analysis. Br J Sports Med 2023; 57 (7): 427–432. doi: 10.1136/bjsports-2022- 106328.
36. Lassus J, Tulikoura I, Konttinen YT et al. Bone stress injuries of the lower extremity. Acta Orthop Scand 2002; 73 (3): 359–368. doi: 10.1080/000164702320155392.
37. Liem BC, Truswell HJ, Harrast MA. Rehabilitation and return to running after lower limb stress fractures. Curr Sports Med Rep 2013; 12 (3): 200–207. doi: 10.1249/JSR.0b013e318 2913cbe.
38. Wilder RP, Brennan DK. Physiological responses to deep water running in athletes. Sports Med 1993; 16 (6): 374–380. doi: 10.2165/000 07256-199316060-00003.
39. Jung AP. The impact of resistance training on distance running performance. Sports Med 2003; 33 (7): 539–552. doi: 10.2165/000 07256-200333070-00005.
40. de Ruiter CJ, van Daal S, van Dieën JH. Individual optimal step frequency during outdoor running. Eur J Sport Sci 2020; 20 (2): 182–190. doi: 10.1080/17461391.2019.1626911.
41. Harrast MA, Colonno D. Stress fractures in runners. Clin Sports Med 2010; 29 (3): 399–416. doi: 10.1016/j.csm.2010.03.001.
42. Boden BP, Osbahr DC. High-risk stress fractures: evaluation and treatment. J Am Acad Orthop Surg 2000; 8 (6): 344–353. doi: 10.5435/ 00124635-200011000-00002.
Doručeno/Submitted: 3. 1. 2024
Přijato/Accepted: 25. 4. 2024
Korespondenční autor:
Mgr. Ivana Hanzlíková, Ph.D.
Katedra fyzioterapie
Fakulta tělesné kultury
Univerzita Palackého v Olomouci
Křížkovského 511/8
779 00 Olomouc
e-mail: ivana.hanzlikova@upol.cz
Labels
Physiotherapist, university degree Rehabilitation Sports medicineArticle was published in
Rehabilitation and Physical Medicine
2024 Issue 2
Most read in this issue
- Stress fractures in runners and their treatment
- Short-term effects of extracorporeal shockwave therapy in the treatment of Achilles tendinopathy – an ultrasound and clinical evaluation
- A rare initial presenting of epicone syndrome – a case report
- Measuring brain activity in a professional dance environment – a study