#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Short-term effects of extracorporeal shockwave therapy in the treatment of Achilles tendinopathy – an ultrasound and clinical evaluation


Authors: Katolický J. 1,2;  Machač S. 1;  Nedělka T. 2,3
Authors‘ workplace: Klinika rehabilitace a tělovýchovného lékařství, 2. LF UK a FN Motol, Praha 1;  Centrum rehabilitace a neurologie, MU Dr. Nedělka, s. r. o., Praha 2;  Katedra zdravotnických oborů a ochrany obyvatelstva, Fakulta bio medicínského inženýrství ČVUT, Praha 3
Published in: Rehabil. fyz. Lék., 31, 2024, No. 2, pp. 56-65.
Category: Original Papers
doi: https://doi.org/10.48095/ccrhfl 202456

Overview

Summary: Achilles tendinopathy (AT) is a commonly used term to describe the clinical manifestations of pain and dysfunction of the Achilles tendon associated with loading. One of the recommended and often used methods in the treatment of these disorders is focused shockwave therapy (ESWT – extracorporeal shock wave therapy). The aim of this study was to observe changes in the structure of the Achilles tendon using ultrasonography and in clinical manifestations after the treatment with low-energy ESWT in a short-term follow-up period. A total of 18 patients with AT were involved in the study, randomly divided into two groups in a ratio of 1: 1. Patients in group A were treated with ESWT. In group B, placebo- -ESWT was used. A total of five applications were done with a weekly interval. The following parameters were evaluated – tendon cross-sectional area (CSA), tendon diameter (TD), maximum pain rating (NRS) and VISA-A (Victorian Institute of Sports Assessment – Achilles) questionnaire. In the 8th week after the first application of ESWT, no statistical significance in the reduction of CSA was observed. Compared with the control group, there was only a statistically significant reduction in NRS (P < 0.05). In addition, there was a significant decrease in NRS by an average of 4 points (P < 0.001), TD by 0.3 mm (P < 0.05), and VISA-A score increased by 20.3 points (P < 0.001) in group A. In group B, no statistically significant difference (P > 0.05) was found in any measured parameter. From the results achieved, it can be concluded that ESWT has a significant effect on pain reduction in the short-term compared to placebo. In addition, a significant improvement in patients‘ overall subjective perception of the disorder was observed in the ESWT group and not in the control group. However, ESWT had no significant effect on tendon CSA and only a minimal effect on TD. Nevertheless, given the short-term follow-up, we cannot confirm or deny whether ESWT affects tendon macromorphology in the long term. At the same time, these results support the selection of parameters for shockwave treatment according to the guidelines published by The International Society for Medical Shockwave Treatment. It should be mentioned that the lower number of included patients may affect the statistical significance.

Keywords:

Achilles tendon – tendinopathy – sonography – extracorporeal shockwave therapy – diagnostic ultrasound


Sources

1. Scott A, Squier K, Alfredson H et al. ICON 2019: international scientific tendinopathy symposium consensus: clinical terminology. Br J Sports Med 2020; 54 (5): 260–262. doi: 10.1136/bjsports-2019-100885.

2. Maffulli N, Longo UG, Kadakia A et al. Achilles tendinopathy. Foot Ankle Surg 2020; 26 (3): 240–249. doi: 10.1016/j.fas.2019.03.009.

3. van Dijk CN, van Sterkenburg MN, Wiegerinck JI et al. Terminology for Achilles tendon related disorders. Knee Surg Sports Traumatol Arthrosc 2011; 19 (5): 835–841. doi: 10.1007/s00167-010-1374-z.

4. Sharma P, Maffulli N. Biology of tendon injury: healing, modeling and remodeling. J Musculoskelet Neuronal Interact 2006; 6 (2): 181–190.

5. Cook JL, Rio E, Purdam CR et al. Revisiting the continuum model of tendon pathology: what is its merit in clinical practice and research? Br J Sports Med 2016; 50 (19): 1187–1191. doi: 10.1136/bjsports-2015-095422.

6. Washburn N, Onishi K, Wang JHC. Ultrasound elastography and ultrasound tissue characterisation for tendon evaluation. J Orthop Translat 2018; 15: 9–20. doi: 10.1016/j.jot.2018. 06.003.

7. Maffulli N, Nilsson Helander K, Migliorini F. Tendon appearance at imaging may be altered, but it may not indicate pathology. Knee Surg Sports Traumatol Arthrosc 2023; 31 (5): 1625–1628. doi: 10.1007/s00167-023-07339-6.

8. Weinfeld SB. Achilles tendon disorders. Med Clin North Am 2014; 98 (2): 331–338. doi: 10.1016/j.mcna.2013.11.005.

9. Couppé C, Suetta C, Kongsgaard M et al. The effects of immobilization on the mechanical properties of the patellar tendon in younger and older men. Clin Biomech 2012; 27 (9): 949–954. doi: 10.1016/j.clinbiomech.2012.06.003.

10. Tran PHT, Malmgaard‐Clausen NM, Puggaard RS et al. Early development of tendinopathy in humans: sequence of pathological changes in structure and tissue turnover signaling. FASEB J 2020; 34 (1): 776–788. doi: 10.1096/fj.201901309R.

11. Longo UG, Ronga M, Maffulli N. Achilles tendinopathy. Sports Med Arthrosc Rev 2009; 17 (2): 112–126. doi: 10.1097/JSA.0b013e3181a3d625.

12. Okewunmi J, Guzman J, Vulcano E. Achilles tendinosis injuries – tendinosis to rupture (getting the athlete back to play). Clin Sports Med 2020; 39 (4): 877–891. doi: 10.1016/ j.csm.2020.05.001.

13. Singh A, Calafi A, Diefenbach C et al. Noninsertional tendinopathy of the Achilles. Foot Ankle Clin 2017; 22 (4): 745–760. doi: 10.1016/ j.fcl.2017.07.006.

14. Dilger CP, Chimenti RL. Nonsurgical treatment options for insertional Achilles tendinopathy. Foot Ankle Clin 2019; 24 (3): 505–513. doi: 10.1016/j.fcl.2019.04.004.

15. Martin RL, Chimenti R, Cuddeford T et al. Achilles pain, stiffness, and muscle power deficits: midportion Achilles tendinopathy revision. J Orthop Sports Phys Ther 2018; 48 (5): A1–A38. doi: 10.2519/jospt.2018.0302.

16. Silbernagel KG, Hanlon S, Sprague A. Current clinical concepts: conservative management of Achilles tendinopathy. J Athl Train 2020; 55 (5): 438–447. doi: 10.4085/1062-6050- 356-19.

17. Notarnicola A, Moretti B. The biological effects of extracorporeal shock wave therapy (ESWT) on tendon tissue. Muscles Ligaments Tendons J 2012; 2 (1): 33–37.

18. Simplicio CL, Purita J, Murrell W et al. Extracorporeal shock wave therapy mechanisms in musculoskeletal regenerative medicine. J Clin Orthop Trauma 2020; 11 (Suppl 3): S309–S318. doi: 10.1016/j.jcot.2020.02.004.

19. Hausdorf J, Lemmens MAM, Heck KDW et al. Selective loss of unmyelinated nerve fibers after extracorporeal shockwave application to the musculoskeletal system. Neuroscience 2008; 155: 138–144. doi: 10.1016/ j.neuroscience.2008.03.062.

20. Rompe JD, Nafe B, Furia JP et al. Eccentric loading, shock-wave treatment, or a wait-and--see policy for tendinopathy of the main body of tendo Achillis – a randomized controlled trial. Am J Sports Med 2017; 35 (3): 374–383. doi: 10.1177/0363546506295940.

21. Stania M, Juras G, Chmielewska D et al. Extracorporeal shock wave therapy for Achilles tendinopathy. Biomed Res Int 2019: 3086910. doi: 10.1155/2019/3086910.

22. Loske AM. Medical and biomedical applications of shock waves. Cham: Springer International Publishing 2017. doi: 10.1007/978- 3-319-47570-7_1.

23. Auersperg V, Gerdesmeyer L, Thiele S et al. DIGEST Guidelines for Extracorporeal Shock Wave Therapy (online). ISMST Guidelines 2019. [online]. https: //www.shockwavetherapy.org/about-eswt/ismst-guidelines/.

24. Iversen JV, Bartels EM, Langberg H. The Victorian institute of sports assessment – Achilles questionnaire (VISA-A) – a reliable tool for measuring Achilles tendinopathy. Int J Sports Phys Ther 2012; 7 (1): 76–84.

25. Furia JP. High-energy extracorporeal shock wave therapy as a treatment for insertional Achilles tendinopathy. Am J Sports Med 2006; 34 (5): 733–740. doi: 10.1177/0363546505281810.

26. Santamato, A, Beatrice R, Micello MF et al. Power Doppler ultrasound findings before and after focused extracorporeal shock wave therapy for Achilles tendinopathy: a pilot study on pain reduction and neovascularization effect. Ultrasound Med Biol 2019; 45 (5): 1316–1323. doi: 10.1016/j.ultrasmedbio.2018. 12.009.

27. Vahdatpour B, Forouzan H, Momeni F et al. Effectiveness of extracorporeal shockwave therapy for chronic Achilles tendinopathy: a randomized clinical trial. J Res Med Sci 2018; 23: 37. doi: 10.4103/jrms.JRMS_413_16.

28. Costa ML, Shepstone L, Donell ST et al. Shock wave therapy for chronic Achilles tendon pain – a randomized placebo-controlled trial. Clin Orthop Relat Res 2005; 440: 199–204. doi: 10.1097/01.blo.0000180451.03425.48.

29. Cheng Y, Zhang J, Cai Y. Utility of ultrasonography in assessing the effectiveness of extracorporeal shock wave therapy in insertional Achilles tendinopathy. Biomed Res Int 2016: 2016: 2580969. doi: 10.1155/2016/ 2580969.

30. Njawaya MM, Moses B, Martens D et al. Ultrasound guidance does not improve the results of shock wave for plantar fasciitis or calcific Achilles tendinopathy – a randomized control trial. Clin J Sport Med 2018; 28 (1): 21–27. doi: 10.1097/JSM.0000000000000430.

31. Bashford GR, Tomsen N, Arya S et al. Tendinopathy discrimination by use of spatial frequency parameters in ultrasound B-Mode images. IEEE Trans Med Imaging 2008; 27 (5): 608–615. doi: 10.1109/TMI.2007.912389.

32. Kulig K, Chang Y-J, Winiarski S et al. Ultrasound-based tendon micromorphology predicts mechanical characteristics of degenerated tendons. Ultrasound Med Biol 2016; 42 (3): 664–673. doi: 10.1016/j.ultrasmedbio.2015.11.013.

Doručeno/Submitted: 16. 12. 2023

Přijato/Accepted: 14. 3. 2024

Korespondenční autor:

Mgr. Jakub Katolický

MUDr. Nedělka, s. r. o.

Žufanova 1113/3

163 00 Praha-Řepy

e-mail: jakubkatolicky@gmail.com

Labels
Physiotherapist, university degree Rehabilitation Sports medicine
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#