Current possibilities of dural reconstruction in neurosurgery
Authors:
Z. Večeřa 1,2; Š. Reguli 1,2; M. Houdek 1,2; R. Lipina 1,2
Authors‘ workplace:
Neurochirurgická klinika, Fakultní nemocnice Ostrava
1; Lékařská fakulta Ostravské univerzity
2
Published in:
Rozhl. Chir., 2018, roč. 97, č. 10, s. 455-458.
Category:
Review
Overview
An integral part of intracranial neurosurgery is the opening of the subdural space and its subsequent closure or reconstruction after the surgery. The optimal goal is a primary watertight suture, although that is often unfeasible for various reasons. Cerebrospinal fluid leakage in postoperative care is an undesirable and potentially dangerous complication of most of the surgical interventions. The aim of this article is to present the current possibilities of dural reconstruction in neurosurgery.
Key words:
mater − cerebrospinal fluid leakage − dural defect −craniectomy
Sources
- Grotenhuis JA. Costs of postoperative cerebrospinal fluid leakage: 1-year, retrospective analysis of 412 consecutive nontrauma cases. Surg Neurol 2005;64:490–3.
- Terasaka S, Iwasaki Y, Kuroda S, et al. A novel method of dural repair using polyglycolic acid non-woven fabric and fibrin glue: clinical results of 140 cases. No Shinkei Geka 2006;34:1109–17.
- Esposito F, Angileri FF, Kruse P, et al. Fibrin sealants in dura sealing: A systematic literature review. PLoS ONE 2016. Available from: doi:10.1371/journal.pone.0151533.
- Than KD, Baird CJ, Olivi A. Polyethylene glycol hydrogel dural sealant may reduce incisional cerebrospinal fluid leak after posterior fossa surgery. Neurosurgery 2008;63:182–7.
- Kosnik EJ. Use of ligamentum nuchae graft for dural closure in posterior fossa surgery. Technical note. J Neurosurg 1998;89:155−6.
- Di Vitantonio H, De Paulis D, Del Maestro M, et al. Dural repair using autologous fat: Our experience and review of the literature. Surgical Neurology International. 2016;7(Suppl 16):S463-S468.
- Black P. Cerebrospinal fluid leaks following spinal or posterior fossa surgery: Use of fat grafts for prevention and repair. Neurosurg Focus 2000;9:e4.
- Shridharani SM, Tufaro AP. A systematic review of acelluar dermal matrices in head and neck reconstruction. Plast Reconstr Surg 2012;130:35S–43S.
- Bartosz DK, Vasterling MK. Dura mater substitutes in the surgical treatment of meningiomas. J Neurosci Nurs 1994;26:140–5.
- Beach HHA. Gold foil in cerebral surgery. Boston Med Surg J 1897;136:281−2.
- Abbe R. Rubber tissue for meningeal adhesions. Trans Am Surg Assoc 1895;13:490−1.
- Sharkey PC, Usher FC, Robertson RCL. Lyophilized human dura mater as a dural substitute. J Neurosurg 1958;15:192−8.
- Preusser M, Ströbel T, Gelpi E, et al. Alzheimer-type in a 28 year old patient with iatrogenic Creutzfeldt-Jakob disease after dural grafting. J Neurol Neurosurg Psychiatry 2006;77:413–6.
- Nishida Y, Yamada M, Hara K, et al. Creutzfeldt-Jakob disease after Jannetta‘s operation with cadaveric dura mater graft: initial manifestations related to the grafted site. J Neurol 2002;249:480–3.
- Brooke FJ, Boyd A, Klug GM, et al. Lyodura use and the risk of iatrogenic Creutzfeldt-Jakob disease in Australia. Med J Aust 2004;180:177–81.
- Parizek J, Mericka P, Husck Z, et al. Detailed evaluation of 2959 allogeneic and xenogeneic dense connective tissue grafts (fascia lata, pericardium and dura mater) used in the course of 20 years for duraplasty in neurosurgery. Acta Neurochir 1997;139:827–81.
- Warren WL, Medary MB, Dureza CD, et al. Dural repair using acellular human dermis: experience with 200 cases: technique assessment. Neurosurgery 2000;46:1391−6.
- Danish SF, Samdani A, Hanna A, et al. Experience with acellular human dura and bovine collagen matrix for duraplasty after posterior fossa decompression for Chiari malformations. J Neurosurg 2006;104 (1 Suppl):16−20.
- Filippi R, Schwarz M, Voth D, et al. Bovine pericardium for duraplasty: clinical results in 32 patients. Neurosurg Rev 2001;24:103−7.
- Malliti M, Page P, Gury C, et al. Comparison of deep wound infection rates using a synthetic dural substitute (neuro-patch) or pericranium graft for dural closure: A clinical review of 1 year. Neurosurgery 2004;54:599–603, discussion 603−4.
- Viñas FC, Ferris D, Kupsky WJ, et al. Evaluation of expanded polytetrafluoroethylene (ePTFE) versus polydioxanone (PDS) for the repair of dura mater defects. Neurol Res 1999;21:262−8.
- Robertson SC, Menezes AH. Hemorrhagic complications in association with silastic dural substitute : pediatric and adult case reports with a review of the literature. Neurosurgery 1997;40:201−5; discussion 205−6.
- Messing-Jünger AM, Ibáñez J, Calbucci F, et al. Effectiveness and handling characteristics of a three-layer polymer dura substitute: a prospective multicenter clinical study. J Neurosurg 2006;105:853−8.
- Rosen CL, Steinberg GK, DeMonte F, et al. Results of the prospective, randomized, multicenter clinical trial evaluating a biosynthesized cellulose graft for repair of dural defects. Neurosurgery 2011;69:1093−103; discussion 1103−4.
- Cobb MA, Badylak SF, Janas W, et al. Histology after dural grafting with small intestinal submucosa. Surg Neurol 1996;46:389–94.
- Cobb MA, Badylak SF, Janas W, et al. Porcine small intestinal submucosa as a dural substitute. Surg Neurol 51:99–104, 1999
- Litvack ZN, West GA, Delashaw JB, et al. Dural augmentation: part I-evaluation of collagen matrix allografts for dural defect after craniotomy. Neurosurgery 2009;65:890−7;discussion 897.
- Narotam PK, Qiao F, Nathoo N. Collagen matrix duraplasty for posterior fossa surgery: evaluation of surgical technique in 52 adult patients. Clinical article. J Neurosurg 2009;111:380−6.
- Narotam PK, Van Dellen JR, Bhoola K, et al. Experimental evaluation of collagen sponge as a dural graft. Br J Neurosurg 1993;7:635−41.
- Parlato C, di Nuzzo G, Luongo M, et al. Use of a collagen biomatrix (TissuDura) for dura repair: A long-term neuroradiological and neuropathological evaluation. Acta Neurochir 2011;153:142–7.
- Barth M, Tuettenberg J, Thomé C, et al. Watertight dural closure: is it necessary? A prospective randomized trial in patients with supratentorial craniotomies. Neurosurgery 2008;63(4 Suppl 2):352–8, discussion 358.
- Sade B, Oya S, Lee JH. Non-watertight dural reconstruction in meningioma surgery: results in 439 consecutive patients and a review of the literature. Clinical article. J Neurosurg 2011;114:714–8.
- Kshettry VR, Lobo B, Lim J, et al. Evaluation of non-watertight dural reconstruction with collagen matrix onlay graft in posterior fossa surgery. Journal of Korean Neurosurgical Society 2016;59:52−7.
Labels
Surgery Orthopaedics Trauma surgeryArticle was published in
Perspectives in Surgery
2018 Issue 10
Most read in this issue
- Spontaneous bilateral rupture of patellar ligament
- Current possibilities of dural reconstruction in neurosurgery
- Intraperitoneal onlay mesh – an analysis of the patient‘s cohort
- Laparoscopic cholecystectomy in patient with situs viscerum inversus totalis and gallbladder empyema – a case report