Prospective-retrospective analysis of the incidence of thyroid tumor gene mutations in Bethesda III– VI cytological findings and their implementation in the clinical practice of surgical de-escalation and/ or individualized treatment
Authors:
J. Astl 1-3; B. Peková Bulanová 4; J. Rotnágl 1,2; R. Holý 1,2; B. Bendlová 4; O. Vorobiov 1,2; J. Soukup 5; J. Hložek 1,2
Authors‘ workplace:
Klinika otorinolaryngologie a maxilofaciální chirurgie 3. LF UK a ÚVN Praha
1; 3. lékařská fakulta, Univerzita Karlova, Praha
2; Katedra otorinolaryngologie, IPVZ, Praha
3; Oddělení molekulární endokrinologie, Endokrinologický ústav, Praha
4; Oddělení patologie, ÚVN Praha
5
Published in:
Otorinolaryngol Foniatr, 73, 2024, No. 3, pp. 125-133.
Category:
Original Article
doi:
https://doi.org/10.48095/ccorl20241125
Overview
Introduction: The incidence of thyroid tumours is increasing worldwide. The most common malignant tumours of the thyroid gland include well-differentiated carcinomas (WDTC), especially papillary thyroid carcinoma (PTC) and follicular thyroid carcinoma (FTC). Medullary thyroid carcinoma (MTC) is less commonly diagnosed. Genetic changes determine the aggressive behavior of tumours and increase the metastatic potential of thyroid tumours. The aim of the study is to determine the incidence of point gene mutations and gene fusions in patients with Bethesda III–VI cytology as a possible predictor of indication of the extent of surgical procedures on the thyroid gland. Materials and methods: The study was prospective-retrospective and included patients operated on at the Department of Otorhinolaryngology and Maxillofacial Surgery of the 3rd Faculty of Medicine, Charles University and the Military University Hospital from July 1, 2019 to July 1, 2022, i.e. a period of 36 months. In the detection of the BRAF V600E gene, the allele of specific Real-Time PCR (LC480, Roche), the TERT gene mutation by direct sequencing (CEQ 8000, Beckman Coulter) was used, samples were analyzed by PCR (MiSeq, Illumina), and the Thyro-ID panel (4base) was used to detect another 12 genes. In addition, 23 fusion genes were tested, including ALK, BRAF, GLIS3, NTRK1, NTRK3, PPARG, and RET gene using Real-Time PCR, and MTC test for mutations in the RET gene and RAS. Results: The study included 273 patients with preoperative cytology Bethesda III–VI. The study was based on 21 (7.7%) men and 256 (93.77%) women. In the group, 103 (37.72%) cancers were histologically confirmed and 170 (62.27%) were found to have a benign tumour. Bethesda III were benign histologies with 118 (63.78%) that were verified, and 67 patients (36.21%) were diagnosed with any type of carcinoma. In Bethesda IV, there were 50 (70.42%) confirmed benign histologies and 21 patients (29.58%) had malignant tumours. BRAF V600E point mutation was detected in 63.85% of papillary thyroid carcinoma and only once in a benign tumour, and one NIFTP case was confirmed. Papillary carcinoma was presented in 83 (76.14%) patients, follicular carcinoma and its variants was in 14 (12.84%) patients, and medullary carcinoma was detected in 6 (5.5%) cases in the group. Conclusions: BRAF V600E point mutation was detected in 63.85% of well differentiated thyroid carcinomas and in other diagnoses, any mutation detected was rare.
Keywords:
de-escalation – Fusion genes – thyroidectomy – BRAF V600E – thyroid carcinoma – point mutations of genes – NLR paresis
Sources
1. Pellegriti G, Frasca F, Regalbuto C et al. World--wide increasing incidence of thyroid cancer: update on epidemiology and risk factors. J Cancer Epidemiol 2013; 2013: 965212. Doi: 10.1155/2013/965212.
2. Davies L, Welch HG. Current thyroid cancer trends in the United States. JAMA Otolaryngol Head Neck Surg 2014; 140 (4): 317–322. Doi: 10.1001/jamaoto.2014.1.
3. Pizzato M, Li M, Vignat J et al. The epidemiological landscape of thyroid cancer worldwide: GLOBOCAN estimates for incidence and mortality rates in 2020. Lancet Diabetes Endocrinol 2022; 10 (4): 264–272. Doi: 10.1016/S2213-8587 (22) 00035-3.
4. Huang Y, Qu S, Zhu G et al. BRAF V600E Mutation-Assisted Risk Stratification of Solitary Intrathyroidal Papillary Thyroid Cancer for Precision Treatment. J Natl Cancer Inst 2018; 110 (4): 362–370. Doi: 10.1093/jnci/djx227.
5. Kovatch KJ, Hoban CW, Shuman AG. Thyroid cancer surgery guidelines in an era of de-escalation. Eur J Surg Oncol 2018; 44 (3): 297–306. Doi: 10.1016/j.ejso.2017.03.005.
6. Kluijfhout WP, Pasternak JD, Drake FT et al. Application of the new American Thyroid Association guidelines leads to a substantial rate of completion total thyroidectomy to enable adjuvant radioactive iodine. Surgery 2017; 161 (1): 127–133. Doi: 10.1016/j.surg.2016.05.056.
7. Lamartina L, Durante C, Lucisano G et al. Are Evidence-Based Guidelines Reflected in Clinical Practice? An Analysis of Prospectively Collected Data of the Italian Thyroid Cancer Observatory. Thyroid 2017; 27 (12): 1490–1497. Doi: 10.1089/thy.2017.0299.
8. Dhir M, McCoy KL, Ohori NP et al. Correct extent of thyroidectomy is poorly predicted preoperatively by the guidelines of the American Thyroid Association for low and intermediate risk thyroid cancers. Surgery 2018; 163 (1): 81–87. Doi: 10.1016/j.surg.2017.04.029.
9. Nasef HO, Nixon IJ, Wreesmann VB. Optimization of the risk-benefit ratio of differentiated thyroid cancer treatment. Eur J Surg Oncol 2018; 44 (3): 276–285. Doi: 10.1016/j.ejso.2018.01.077.
10. Paluskievicz CM, Chang DR, Blackburn KW et al. Low-Risk Papillary Thyroid Cancer: Treatment De-Escalation and Cost Implications. J Surg Res 2022; 275: 273–280. Doi: 10.106/j.jss.2022.01.019.
11. Haymart MR, Goldner WS. Thyroid Cancer Clinical Guidelines and the De-escalation of Care. JAMA Otolaryngol Head Neck Surg 2020; 146 (11): 1082–1083. Doi: 10.1001/jamaoto. 2020.3260.
12. Hartl DM, Hadoux J, Garcia C et al. Les stratégies de désescalade pour les cancers différenciés de la thyroïde. Bull Cancer 2021; 108 (12): 1132–1144. Doi: 10.1016/j.bulcan.2021. 07.008.
13. Kikumori T, Takeuchi D., Takano Y et al. Optimal surgical strategy derived from de-escalation of surgical treatment for intermediate-risk papillary thyroid carcinoma. J-STAGE 2023; 40 (3): 140–144. Doi: https: //doi.org/10.11226/ojjaes.40.3_140.
14. Ito Y, Higashiyama T, Takamura Y et al. Risk factors for recurrence to the lymph node in papillary thyroid carcinoma patients without preoperatively detectable lateral node metastasis: validity of prophylactic modified radical neck dissection. World J Surg 2007; 31 (11): 2085–2091. Doi: 10.1007/s00268-007- 9224-y.
15. Ducoudray R, Trésallet C, Godiris-Petit G et al. Prophylactic lymph node dissection in papillary thyroid carcinoma: is there a place for lateral neck dissection? World J Surg 2013; 37 (7): 1584–1591. Doi: 10.1007/s00268-013- 2020-y.
16. Haddad RI, Bischoff L, Ball D et al. Thyroid Carcinoma, Version 2.2022, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2022; 20 (8): 925–951. Doi: 10.6004/jnccn.2022.0040.
17. Kim SK, Woo JW, Lee JH et al. Radioactive iodine ablation may not decrease the risk of recurrence in intermediate-risk papillary thyroid carcinoma. Endocr Relat Cancer 2016; 23 (5): 367–376. Doi: 10.1530/ERC-15-0572.
18. Krajewska J, Kukulska A, Oczko-Wojciechowska M et al. Early Diagnosis of Low- -Risk Papillary Thyroid Cancer Results Rather in Overtreatment Than a Better Survival. Front Endocrinol (Lausanne) 2020; 11: 571421. Doi: 10.3389/fendo.2020.571421.
19. Haaga E, Kalfert D, Ludvíková M et al. Non-Invasive Follicular Thyroid Neoplasm with Papillary-Like Nuclear Features Is Not a Cytological Diagnosis, but It Influences Cytological Diagnosis Outcomes: A Systematic Review and Meta-Analysis. Acta Cytol 2022; 66 (2): 85–105. Doi: 10.1159/000519757.
20. Haugen BR, Alexander EK, Bible KC et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016; 26 (1): 1–133.
21. Twining CL, Lupo MA, Tuttle RM. Implementing Key Changes in the American Thyroid Association 2015 Thyroid Nodules/Differentiated Thyroid Cancer Guidelines Across Practice Types. Endocr Pract 2018; 24 (9): 833–840. Doi: 10.4158/EP-2018-0130.
22. American Thyroid Association (ATA) Guidelines Taskforce on Thyroid Nodules and Differentiated Thyroid Cancer, Cooper DS, Doherty GM et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 2009; 19 (11): 1167–1214. Doi: 10.1089/thy.2009.0110.
23. Filetti S, Durante C, Hartl D et al. Thyroid cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2019; 30 (12): 1856–1883. Doi: 10.1093/annonc/mdz400.
24. Samaan NA, Schultz PN, Hickey RC et al. The results of various modalities of treatment of well differentiated thyroid carcinomas: a retrospective review of 1599 patients. J Clin Endocrinol Metab 1992; 75 (3): 714–720. Doi: 10.1210/jcem.75.3.1517360.
25. DeGroot LJ, Kaplan EL, McCormick M, Straus FH. Natural history, treatment, and course of papillary thyroid carcinoma. J Clin Endocrinol Metab 1990; 71 (2): 414–424. Doi: 10.1210/jcem-71-2-414.
26. Mazzaferri EL, Young RL. Papillary thyroid carcinoma: a 10 year follow-up report of the impact of therapy in 576 patients. Am J Med 1981; 70 (3): 511–518. Doi: 10.1016/0002-9343 (81) 90573-8.
27. Hay ID, Thompson GB, Grant CS et al. Papillary thyroid carcinoma managed at the Mayo Clinic during six decades (1940–1999): temporal trends in initial therapy and long-term outcome in 2444 consecutively treated patients. World J Surg 2002; 26 (8): 879–885. Doi: 10.1007/s00268-002-6612-1.
28. Shaha AR, Shah JP, Loree TR. Differentiated thyroid cancer presenting initially with distant metastasis. Am J Surg 1997; 174 (5): 474–476. Doi: 10.1016/s0002-9610 (97) 00158-x.
29. Bilimoria KY, Bentrem DJ, Ko CY et al. Extent of surgery affects survival for papillary thyroid cancer. Ann Surg 2007; 246 (3): 375–384. Doi: 10.1097/SLA.0b013e31814697d9.
30. Shah JP. Re: Extent of surgery affects papillary thyroid cancer. Ann Surg 2008; 247 (6): 1082–1084. Doi: 10.1097/SLA.0b013e3181758d93.
31. Song E, Han M, Oh HS et al. Lobectomy Is Feasible for 1–4 cm Papillary Thyroid Carcinomas: A 10-Year Propensity Score Matched-Pair Analysis on Recurrence. Thyroid 2019; 29 (1): 64–70. Doi: 10.1089/thy.2018.0554.
32. Kim SK, Park I, Woo JW et al. Predicting Factors for Bilaterality in Papillary Thyroid Carcinoma with Tumor Size <4 cm. Thyroid 2017; 27 (2): 207–214. Doi: 10.1089/thy.2016. 0190.
33. Hauch A, Al-Qurayshi Z, Randolph G et al. Total thyroidectomy is associated with increased risk of complications for low- and high-volume surgeons. Ann Surg Oncol 2014; 21 (12): 3844–3852. Doi: 10.1245/s10434-014-3 846-8.
34. Sawant R, Hulse K, Sohrabi S et al. The impact of completion thyroidectomy. Eur J Surg Oncol 2019; 45 (7): 1171–1174. Doi: 10.1016/ j.ejso.2019.03.018.
35. Lebbink CA, Links TP, Czarniecka A et al. 2022 European Thyroid Association Guidelines for the management of pediatric thyroid nodules and differentiated thyroid carcinoma. Eur Thyroid J 2022; 11 (6): e220146. Doi: 10.1530/ETJ-22-0146.
36. Bulanova Pekova B, Sykorova V, Mastnikova K et al. RET fusion genes in pediatric and adult thyroid carcinomas: cohort characteristics and prognosis. Endocr Relat Cancer 2023; 30 (12): e230117. Doi: 10.1530/ERC-23-0117.
37. Baek JH, Lee JH, Valcavi R et al. Thermal ablation for benign thyroid nodules: radiofrequency and laser. Korean J Radiol 2011; 12 (5): 525–540. Doi: 10.3348/kjr.2011.12.5.525.
38. Durante C, Hegedüs L, Czarniecka A et al. 2023 European Thyroid Association Clinical Practice Guidelines for thyroid nodule management. Eur Thyroid J 2023; 12 (5): e230067. Doi: 10.1530/ETJ-23-0067.
39. Haar GT, Coussios C. High intensity focused ultrasound: physical principles and devices. Int J Hyperthermia 2007; 23 (2): 89–104. Doi: 10.1080/02656730601186138.
40. Jin H, Lin W, Lu L, Cui M. Conventional thyroidectomy vs thyroid thermal ablation on postoperative quality of life and satisfaction for patients with benign thyroid nodules. Eur J Endocrinol 2021; 184 (1): 131–141. Doi: 10.1530/EJE-20-0562.
41. Orloff LA, Noel JE, Stack BC Jr et al. Radiofrequency ablation and related ultrasound-guided ablation technologies for treatment of benign and malignant thyroid disease: An international multidisciplinary consensus statement of the American Head and Neck Society Endocrine Surgery Section with the Asia Pacific Society of Thyroid Surgery, Associazione Medici Endocrinologi, British Association of Endocrine and Thyroid Surgeons, European Thyroid Association, Italian Society of Endocrine Surgery Units, Korean Society of Thyroid Radiology, Latin American Thyroid Society, and Thyroid Nodules Therapies Association. Head Neck 2022; 44 (3): 633–660. Doi: 10.1002/hed.26960.
42. Parente DN, Kluijfhout WP, Bongers PJ et al. Clinical Safety of Renaming Encapsulated Follicular Variant of Papillary Thyroid Carcinoma: Is NIFTP Truly Benign? World J Surg 2018; 42 (2): 321–326. Doi: 10.1007/s00268-017- 4182-5.
43. Enumah S, Fingeret A, Parangi S et al. BRAF V600E Mutation is Associated with an Increased Risk of Papillary Thyroid Cancer Recurrence. World J Surg 2020; 44 (8): 2685–2691. Doi: 10.1007/s00268-020-05521-2.
44. Li X, Kwon H. The Impact of BRAF Mutation on the Recurrence of Papillary Thyroid Carcinoma: A Meta-Analysis. Cancers (Basel) 2020; 12 (8): 2056. Doi: 10.3390/cancers120 82056.
45. Vuong HG, Le HT, Le TTB et al. Clinicopathological significance of major fusion oncogenes in papillary thyroid carcinoma: An individual patient data meta-analysis. Pathol Res Pract 2022; 240: 154180. Doi: 10.1016/j.prp.2022.154180.
ORCID autorů
J. Astl 0000-0002-8022-0200,
B. Peková Bulanová 0000-0002-8571-164X,
J. Rotnágl 0000-0003-2692-0342,
R. Holý 0000-0001-8073-3658,
B. Bendlová 0000-0001-7008-8675,
O. Vorobiov 0000-0001-5314-1075,
J. Soukup 0000-0001-7169-4386,
J. Hložek 0000-0002-3584-9747.
Labels
Audiology Paediatric ENT ENT (Otorhinolaryngology)Article was published in
Otorhinolaryngology and Phoniatrics
2024 Issue 3
Most read in this issue
- Use of 3D printing in head and neck surgery
- The microbiome and chronic rhinosinusitis
- Surgical approaches to head and neck sarcomas – current concepts and perspectives
- Prospective-retrospective analysis of the incidence of thyroid tumor gene mutations in Bethesda III– VI cytological findings and their implementation in the clinical practice of surgical de-escalation and/ or individualized treatment