Nanoparticles from welding and their effects on health
Authors:
M. Hurbánková 1; D. Hrašková 1; J. Marcišiaková 2; K. Kysucká 2; Š. Moricová 1
Authors‘ workplace:
Slovenská zdravotnícka univerzita v Bratislave, Fakulta verejného zdravotníctva, Ústav pracovnej zdravotnej služby, Bratislava, Slovensko, dekan fakulty doc. MUDr. Štefánia Moricová, PhD., MPH, mim. prof.
1; Medicínsko-preventívna s. r. o., Hnúšťa, Slovensko
2
Published in:
Pracov. Lék., 67, 2015, No. 1, s. 12-17.
Category:
Review Article
Overview
Introduction:
The work deals with the latest nowledge of nanoparticles from welding in terms of their properties and effects on health. Although certain industrial processes driving nanocompound (e.g., carbon black, fumes from welding, etc.) exist for decades, occupational exposure data, including the size and amount of particles in the workplace and their biological effects are less well known.
The mechanism of nanoparticles of welding:
High temperatures during welding fumes generated by welding particles, radiation, noise and fumes. The particles of welding fumes contain a large percentage of nanoparticles. Metal vaporized from a thermal oxidation process of welding to gas-contains particles of metal such as aluminum, cadmium, chromium, copper, many of which are soluble in water. Exact composition of the vapor from welding is depends on the metal comprising the electrode.
Health effects:
Fumes from welding produces strong pro-inflammatory effects. These effects are caused predominantly from metals, which undergo redox - cyclisation and lead to oxidative stress. Exposure to vapors from welding is associated with lung disease. These include: a decrease in lung function, increased airway reactivity, bronchitis, fibrosis, cancer and increased risk of respiratory tract infection.
Conclusion:
Toxicity, mechanism of action of nanoparticles from welding on the body, as well as pathomechanism of many respiratory diseases after welding fume exposure – remain unknown and therefore, for this reason is increasing interest in the comprehensive assessment of the their risk / safety.
Keywords:
nanoparticles from the welding – lung disease developed from the welding fume exposure – mechanism of action as a result of oxidative stress
Sources
1. Antonini, J. M. Health effects of welding. Critical Reviews in Toxicology, 2003, 33, 1, s. 61–103. ISSN: 1040-8444.
2. Byrne, J. D., Baugh, J. A. The significance of nanoparticles in particle-induced pulmonary Fibrosis. McGill Journa lof Medicine, 2008, 11, 1, s. 43–50. ISSN 08493416 04.
3. Cena, L. G., Keane, M. J., Chisholm, W. P., Stone, S., Harper, M., Chen, B. T. A novel method for assessing respiratory deposition of welding fume nanoparticles. J. Occup. Environ. Hyg., 2014, 11, 12, s. 771–780.
4. Donaldson, K. et al. Nanotoxicology: a new frontier in particle toxicology relevant to both the workplace and general environment and to consumer safety. Journal Occupational and Environmenatl Medicine, 2004, 61, 9, s. 727–728. ISSN 1536-5948.
5. Donaldson, K. et al. Combustion – derived nanoparticles: a review of their toxicology following inhalation exposure. Particle and Fibre Toxicology, 2005, s. 434 ISSN: 1743-8977.
6. Dorman, D. C., Struve, M. F., James, R. A., Marshall, M. W., Parkinson, C. U., Wong, B. A. Influence of particle solubility on the delivery of inhaled manganese to the rat brain: manganese sulfate and manganese tetroxide pharmacokinetics following repeated (14-day) exposure. Toxicol. Appl. Pharmacol., 2001, 170, s. 79–87.
7. Duffin, R. et al. The importance of surface area and specific reactivity in the acute pulmonary inflammatory responde to particles. The Annalas Occupational Hygiene, 2002, 46, 1, s. 242–245. ISSN 00034878.
8. Erikson, K. M., Dorman, D. C., Lash, L. H., Dobson, A. W., Aschner, M. Airborne manganese exposure differentially affects end points of oxidative stress in an age- and sex-dependent manner. Biol. Trace Elem. Res., 2004, 100, s. 49–62.
9. European Commission, EU. Second Regulatory Review on Nanomaterials, COM., 2012, 572 Final, Brussels, 3.10.2012, 18 s.
10. Fine, J. M. et al. Metal fume fever: characterization of clinical and plasma IL-6 responses in controlled human exposures to zinc oxide fume at and below the threshold limit value. Journal of Occupational and Environmental Medicine, 1997, 39, 8, s. 722–726. ISSN 1536-594858.
11. Fubini, B., Mollo, L., Giamello, E. Free-radical generation at the solid/liquid interface in iron- containing minerals. Free Radical Research, 1995, 23, 6, s. 593–614. ISSN 1029-2470.
12. Hull, M. J., Abraham, J. L. Aluminum welding fume-induced pneumoconiosis. Human Pathology, 2002, 33, 8, s. 819–825. ISSN 1532-8392.
13. Hurbánková, M. Pevné aerosóly a zdravie. In: Šulcová, M., Čižnár, I., Fabiánová, E. Verejné zdravotníctvo. VEDA, Bratislava, 2012, 651 p. ISBN 978-80-224-1283-4.
14. Hurbánková, M. et al. Účinok nanočastíc TiO2 na vybrané parametre bronchoalveolárnej laváže – časová závislosť. In: Osina, O., Mušák, Ľ Pracovné lekárstvo a toxikológia – nové poznatky a skúsenosti, Ed., JLF UK: Martin, 2012, 304 s. ISBN 978-80-89544-14-1.
15. Hurbánková, M., Hrašková, D., Moricová, Š. Profesionálna expozícia nanočasticiam, Pracov. Lék., 2014, 66, 2–3, s. 78–84.
16. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans (Report of the advisory group to recommend priorities for IARC monographs during 2010–2014) Lyon, France: 17–20 June, 2008, ISSN 1017-1606.
17. Kreyling, W. G. et al. Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. Journal of Toxicology Environmental Health, 2002, 65, 20, s. 1513–1530. ISSN 0098-4108.
18. Li, G. J. et al. Occupational exposure to welding fume among welders: alterations of manganese, iron, zinc, copper, and lead in body fluids and the oxidative stress status. Journal of Occupational and Environmantal Medicine., 2004, 46, 3, s. 241–248. ISSN 1536-5948.
19. McNeilly, J. D. et al. Soluble transition metals cause the pro-inflammatory effects of welding fumes in vitro. Toxicology and Applied Pharmacology, 2004, 196, 1, s. 95–107. ISSN 1096-0333.
20. Naslund, P.E. et al. Effects of exposure to welding fume: an experimental study in sheep. European Respiratory Journal, 1990, 3, s. 800–806. ISSN 1399-3003.
21. NIOSH current intelligence bulletin: Evaluation of health hazard and occupational exposure to titanium dioxide. Draft. Available at: Accessed May 3, 2010. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health. Dostupné na www: http://www.cdc.gov/niosh/review/public/tio2/pdfs/tio2draft.pdf
22. Sferlazza, S. J., Beckett, W. S. The respiratory health of welders. American Revue of Respiratory Diseases, 1991, 143, s. 1134–1148. ISSN 0003-0805.
23. Rice, T.M., et al. Differential ability of transition metals to induce pulmonary inflammation. Toxicology and Applied Pharmacology, 2001, 177, s. 46–53. ISSN 0041008X.
24. Rupová, M., Skřehot, P. Nanobezpečnost. Výskumný ústav bezpečnosti práce, XXX. kongres pracovního lékařství s mezinárodní účastí, Praha, 13.–14. 10. 2011.
25. Sadek, A. H., Rauch, R., Schulz, P. E. Parkinsonism due to manganism in a welder. Int. J. Toxicol., 2003, 22, s. 393–401.
26. Squadrito, G. L. et al. Quinoid redox cycling as a mechanism for sustained free radical generation by inhaled airborne particulate matter. Free Radic. Biol. Med., 2001, 31, s. 1132–1138. ISSN 0891-5849. Dostupné na www: http://www.particleandfibretoxicology.com/pubmed/11677046.
27. Taylor, M. D. et al. Effects of welding fumes of differing composition and solubility on free radical production and acute lung injury and inflammation in rats. Toxicol. Sci., 2003, 75, s. 181–191. ISSN 1096-0929.
28. Warheit, D. B. et al. Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. Toxicology Letters, 2007, 171, 3, s. 99–110. ISSN 0378-4274.
Labels
Hygiene and epidemiology Hyperbaric medicine Occupational medicineArticle was published in
Occupational Medicine
2015 Issue 1
Most read in this issue
- Nanoparticles from welding and their effects on health
- Psychical work safety
- Risk of the dust containing silica in coal miners – a review
- Analysis of the nurses working load at the orthopaedics-traumatology department