#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Telemedicine in arrhythmology


Authors: Veronika Bulková 1,2;  Jakub Pindor 1;  Filip Plešinger 1,3;  Ivo Viščora 3;  Martin Fiala 1,2
Authors‘ workplace: MDT –, Mezinárodní centrum pro telemedicínu, Medical Data Transfer, Brno 1;  Centrum kardiovaskulární péče, Neuron Medical, Brno 2;  Ústav přístrojové techniky AV ČR, Brno 3
Published in: Vnitř Lék 2022; 68(3): 160-165
Category: Main Topic

Overview

Telemedicine can be defined as a health care service that, specifically in the field of diagnostics, employs remote transfer of a large volume of data from a large number of subjects at the same time. This data is subsequently processed on a central basis and returned to a large number of health care providers by whom the service was ordered on national or international level. In arrhythmology, telemedicine is used particularly in long-term ECG monitoring to diagnose arrhythmias and check out treatment outcome via external recorders, smart watch, and implantable devices. To facilitate analysis of large telemedicine data volume, artificial intelligence is being increasingly exploited.

Keywords:

artificial intelligence – Telemedicine – arrhythmology – ECG monitoring


Sources

1. Varma N. Rationale and design of a prospective study of the efficacy of a remote monitoring system used in implantable cardioverter defibrillator follow‑up: the Lumos‑T Reduces Routine Office Device Follow‑Up Study (TRUST) study. Am Heart J. 2007;154:1029-1034.

2. Crossley GH, Boyle A, Vitense H et al. The CONNECT (Clinical Evaluation of Remote Notification to Reduce Time to Clinical Decision) trial: The value of wireless remote monitoring with automatic clinician alerts. J Am Coll Cardiol. 2011;57:1181-1189.

3. Mabo P, Victor F, Bazin P et al. A randomized trial of long‑term remote monitoring of pacemaker recipients (The COMPAS trial). Eur Heart J. 2012;33:1105-1111.

4. Saxon LA, Gates DL, Gilliam PA et al. Long‑term outcome after ICD and CRT implantation and influence of remote device follow‑up: the ALTITUDE survival study. Circulation. 2010;122:2359-2367.

5. Hutten H, Schreier G, Kastner P. Cardiac telemonitoring using pacemakers and the Internet. Medical & Biological Engineering & Computing. 1999;35 (Suppl 2):1295

6. Roberts PR, El Refai MH. The Use of App‑based Follow‑up of Cardiac Implantable Electronic Devices. Card Fail Rev. 2020;6:e03.

7. Tilz, Roland R et al. „Real‑worldAdoptionof Smartphone‑based Remote Monitoring UsingtheConfirmRx ™ InsertableCardiac Monitor.“ The Journal of innovations in cardiac rhythm management vol. 12:8 4613-4620.

8. Varma N, Piccini JP, Snell J, Fischer A, Dalal N, Mittal S. Relation ship between Level of Adherence to Automatic Wireless Remote Monitoring and Survival in Pacemaker and Defibrillator Patients. J Am Coll Cardiol. June 23, 2015;65(24):2601-2610.

9. Tarakji KG, Vives CA, Patel AS, Fagan DH, Sims JJ, Varma N. Success of pacemaker remote monitoring using app‑based technology: Does patient age matter? Pacing Clin Electrophysiol. 2018 Oct; 41(10):1329-1335.

10. Plesinger F, Andrla P, Viscor I, Bulkova V, Jurak P. „Shape Analysis of Consecutive Beats May Help in the Automated Detection of Atrial Fibrillation,“ in Computing in Cardiology, 2018.

11. Clifford GD et al. AF Classification from a Short Single Lead ECG Recording: The Physionet Computing in Cardiology Challenge 2017. In Comput Cardiol. (Rennes IEEE), 2017.1-4.

12. Datta S et al. Identifying Normal, AF and other Abnormal ECG Rhythms using a Cascaded Binary Classifier. In Comput Cardiol (Rennes IEEE). 2017;44:1-4.

13. Hong S et al. ENCASE: an ENsemble ClASsifiEr for ECG Classification Using Expert Features and Deep Neural Networks. In Comput Cardiol (Rennes IEEE), 2017, vol. 44, 1-4.

14. Teijeiro T, García CA, Castro D, Félix P. Arrhythmia Classification from the Abductive Interpretation of Short Single‑Lead ECG Records. In Comput Cardiol (Rennes IEEE), 2017, vol. 44, 1-4.

15. Ronneberger O, Fischer P, Brox T. U‑Net: Convolutional Networks for Biomedical Image Segmentation. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics). 2015;9351:234-241.

16. Reyna MA et al. Will Two Do? Varying Dimensions in Electrocardiography: The PhysioNet/ Computing in Cardiology Challenge 2021.

17. Nejedly P, Ivora A, Viscor I, Halamek J, Jurak P, Plesinger F. Utilization of Residual CNN‑GRU With Attention Mechanism for Classification of 12-lead ECG.

18. Vaswani A et al. Attention is all you need. In Advances in Neural Information Processing Systems. 2017; Decem. 2017:5999-6009.

19. Baltruschat IM, Nickisch H, Grass M, Knopp T, Saalbach A. Comparison of Deep Learning Approaches for Multi‑Label Chest X‑Ray Classification. Sci. Reports. 2019; Apr. 2019:1-10.

Labels
Diabetology Endocrinology Internal medicine
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#