Cardiovascular effects of GLP-1 receptor agonist treatment: focus on liraglutide
Authors:
Martin Haluzík; Pavel Trachta; Miloš Mráz
Authors‘ workplace:
III. interní klinika 1. LF UK a VFN Praha, přednosta prof. MUDr. Štěpán Svačina, DrSc., MBA
Published in:
Vnitř Lék 2015; 61(7-8): 635-640
Category:
Reviews
Overview
Cardiovascular risk reduction is the major aim of type 2 diabetes mellitus treatment. The effects of various antidiabetics on the cardiovascular complications are currently under careful scrutiny. Incretin-based therapy that utilizes the effects of glucagon-like peptide 1 (GLP-1) or stimulation of its receptor by GLP-1 receptor agonists represents one of the most promising approaches from the potential cardiovascular risk reduction point of view. Experimental studies have shown that the GLP-1 and GLP-1 agonists treatment improves endothelial function, decrease blood pressure and protects myocardium during experimentally-induced ischemia. Clinical studies with GLP-1 receptor agonists consistently show that, in addition to good antidiabetic efficacy, its long-term administration decreases blood pressure, body weight and improves circulating lipid levels while slightly increasing heart rate. In this paper, we focus on the cardiovascular effects of GLP-1 receptor agonist liraglutide. Preliminary analyses of cardiovascular complications in phase III trials with liraglutide indicate its good cardiovascular safety. A possibility of cardioprotective effects of liraglutide remains still open and is currently studied within a prospective cardiovascular trial LEADER.
Key words:
cardiovascular complications – diabetes mellitus – GLP-1 agonists – glucagon-like peptide 1 – liraglutide
Sources
1. O‘Rahilly. S Science, medicine, and the future. Non-insulin dependent diabetes mellitus: the gathering storm. BMJ 1997; 314 (7085): 955–959.
2. Škrha J. Diabetes mellitus 2002 v České republice – epidemiologická studie. DMEV 2005; 8(1): 5–12.
3. Banegas JR, Lopez-Garcia E, Gutierrez-Fisac JL et al. A simple estimate of mortality attributable to excess weight in the European Union. Eur J Clin Nutr 2003; 57(2): 201–208.
4. Bell D. Pathophysiology of type 2 diabetes and its relationship to new therapeutic approaches. Diabetes Educ 2000; 26(Suppl): S4-S7.
5. Reaven G, Abbasi F, McLaughlin T. Obesity, insulin resistance, and cardiovascular disease. Recent Prog Horm Res 2004; 59: 207–223.
6. Svačina S, Owen K. Syndrom inzulínové rezistence. Triton: Praha 2003. ISBN 80–7254–353–9.
7. Haffner SM, Lehto S, Ronnemaa T et al. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 1998; 339(4): 229–234.
8. Škrha J et al. Diabetologie. Galén: Praha 2009. ISBN 978–80–7262–607–6.
9. de Galan BE, Zoungas S, Chalmers J et al. Cognitive function and risks of cardiovascular disease and hypoglycaemia in patients with type 2 diabetes: the Action in Diabetes and Vascular Disease: Preterax and Diamicron Modified Release Controlled Evaluation (ADVANCE) trial. Diabetologia 2009; 52(11): 2328–2336.
10. Kahn SE, Haffner SM, Heise MA et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 2006; 355(23): 2427–2443.
11. Ahren B. Clinical results of treating type 2 diabetic patients with sitagliptin, vildagliptin or saxagliptin – diabetes control and potential adverse events. Best Pract Res Clin Endocrinol Metab 2009; 23(4): 487–498.
12. Deacon CF, Mannucci E, Ahren B. Glycaemic efficacy of glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors as add-on therapy to metformin in subjects with type 2 diabetes-a review and meta analysis. Diabetes Obes Metab 2012; 14(8): 762–767.
13. Holst JJ, Gromada J. Role of incretin hormones in the regulation of insulin secretion in diabetic and nondiabetic humans. Am J Physiol Endocrinol Metab.2004; 287(2): E199-E206.
14. Nauck MA. Glucagon-like peptide 1 (GLP-1) in the treatment of diabetes. Horm Metab Re. 2004; 36(11–12): 852–858.
15. Gleeson JM, Berenbeim DM, Gilkin RJ. Incretin mimetics: promising new therapeutic options in the treatment of type 2 diabetes. J Manag Care Pharm 2005; 11(Suppl 7): S2-S13.
16. Doggrell SA Is liraglutide or exenatide better in type 2 diabetes? Expert Opin Pharmacother 2009; 10(16): 2769–2772.
17. Roubíček T, Mráz M, Bártlová M et al. Vliv 6měsíčního podávání exenatidu na kompenzaci diabetes mellitus 2. typu, antropometrické a bio¬chemické parametry. Vnitř Lék 2010; 56(1): 15–20.
18. Haluzík M, Svačina Š. Inkretinová léčba diabetu. Mladá Fronta: Praha 2010. ISBN 978–80–204–2247–7.
19. Drucker DJ. The biology of incretin hormones. Cell Metab 2006; 3(3): 153–165.
20. Ban K, Noyan-Ashraf MH, Hoefer J et al. Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Circulation 2008; 117(18): 2340–2350.
21. Abu-Hamdah R, Rabiee A, Meneilly GS et al. Clinical review: The extrapancreatic effects of glucagon-like peptide-1 and related peptides. J Clin Endocrinol Metab 2009; 94(6): 1843–1852.
22. Nikolaidis LA, Elahi D, Hentosz T et al. Recombinant glucagon-like peptide-1 increases myocardial glucose uptake and improves left ventricular performance in conscious dogs with pacing-induced dilated cardiomyopathy. Circulation 2004; 110(8): 955–961.
23. Timmers L, Henriques JP, de Kleijn DP et al. Exenatide reduces infarct size and improves cardiac function in a porcine model of ischemia and reperfusion injury. J Am Coll Cardiol 2009; 53(6): 501–510.
24. Noyan-Ashraf MH, Momen MA, Ban K et al. GLP-1R agonist liraglutide activates cytoprotective pathways and improves outcomes after experimental myocardial infarction in mice. Diabetes 2009; 58(4): 975–983.
25. Sokos GG, Nikolaidis LA, Mankad S et al. Glucagon-like peptide-1 infusion improves left ventricular ejection fraction and functional status in patients with chronic heart failure. J Card Fail 2006; 12(9): 694–699.
26. Nikolaidis LA, Mankad S, Sokos GG et al. Effects of glucagon-like peptide-1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion. Circulation 2004; 109(8): 962–965.
27. Sokos GG, Bolukoglu H, German J et al. Effect of glucagon-like peptide-1 (GLP-1) on glycemic control and left ventricular function in patients undergoing coronary artery bypass grafting. Am J Cardiol 2007; 100(5): 824–829.
28. Davidson MH. Cardiovascular effects of glucagonlike peptide-1 agonists. Am J Cardiol 2011; 108(Suppl 3): S33B-S41B. Dostupné z DOI: <http://dx.doi.org/10.1016/j.amjcard.2011.03.046>.
29. Koska J, Schwartz EA, Mullin MP et al. Improvement of postprandial endothelial function after a single dose of exenatide in individuals with impaired glucose tolerance and recent-onset type 2 diabetes. Diabetes Care 2010; 33(5): 1028–1030.
30. Pyke C, Heller RS, Kirk RK et al. GLP-1 receptor localization in monkey and human tissue: novel distribution revealed with extensively validated monoclonal antibody. Endocrinology 2014; 155(4): 1280–1290.
31. Davies MJ, Kela R, Khunti K. Liraglutide – overview of the preclinical and clinical data and its role in the treatment of type 2 diabetes. Diabetes Obes Metab 2011; 13(3): 207–220.
32. Drucker DJ, Dritselis A, Kirkpatrick P. Liraglutide. Nat Rev Drug Discov 2010; 9(4): 267–268.
33. Sturis J, Gotfredsen CF, Romer J et al. GLP-1 derivative liraglutide in rats with beta-cell deficiencies: influence of metabolic state on beta-cell mass dynamics. Br J Pharmacol 2003; 140(1): 123–132.
34. Kristensen J, Mortensen UM, Schmidt M et al. Lack of cardioprotection from subcutaneously and preischemic administered liraglutide in a closed chest porcine ischemia reperfusion model. BMC cardiovascular disorders 2009; 9: 31. Dostupné z DOI: <http://dx.doi.org/10.1186/1471–2261–9-31>.
35. Ahren B. GLP-1 and extra-islet effects. Horm Metab Res 2004; 36(11–12): 842–845.
36. Hegedus L, Moses AC, Zdravkovic M et al. GLP-1 and Calcitonin Concentration in Humans: Lack of Evidence of Calcitonin Release from Sequential Screening in over 5000 Subjects with Type 2 Diabetes or Nondiabetic Obese Subjects Treated with the Human GLP-1 Analog, Liraglutide. J Clin Endocrinol Metab 2011; 96(3): 853–860.
37. Zinman B, Gerich J, Buse JB et al. Efficacy and safety of the human glucagon-like peptide-1 analog liraglutide in combination with metformin and thiazolidinedione in patients with type 2 diabetes (LEAD-4 Met+TZD). Diabetes Care 2009; 32(7): 1224–1230.
38. Montanya E, Sesti G. A review of efficacy and safety data regarding the use of liraglutide, a once-daily human glucagon-like peptide 1 analogue, in the treatment of type 2 diabetes mellitus. Clin Ther 2009; 31(11): 2472–2488.
39. Buse JB, Rosenstock J, Sesti G et al. Liraglutide once a day versus exenatide twice a day for type 2 diabetes: a 26-week randomised, parallel-group, multinational, open-label trial (LEAD-6). Lancet 2009; 374(9683): 39–47.
40. Garber A, Henry R, Ratner R et al. Liraglutide versus glimepiride monotherapy for type 2 diabetes (LEAD-3 Mono): a randomised, 52-week, phase III, double-blind, parallel-treatment trial. Lancet 2009; 373(9662): 473–481.
41. Marre M, Shaw J, Brandle M et al. Liraglutide, a once-daily human GLP-1 analogue, added to a sulphonylurea over 26 weeks produces greater improvements in glycaemic and weight control compared with adding rosiglitazone or placebo in subjects with Type 2 diabetes (LEAD-1 SU). Diabet Med 2009; 26(3): 268–278.
42. Vilsboll T, Zdravkovic M, Le-Thi T et al. Liraglutide, a long-acting human glucagon-like peptide-1 analog, given as monotherapy significantly improves glycemic control and lowers body weight without risk of hypoglycemia in patients with type 2 diabetes. Diabetes Care 2007; 30(6): 1608–1610.
43. Russell-Jones D, Vaag A, Schmitz O et al. Liraglutide vs insulin glargine and placebo in combination with metformin and sulfonylurea therapy in type 2 diabetes mellitus (LEAD-5 met+SU): a randomised controlled trial. Diabetologia 2009; 52(10): 2046–2055.
44. Nauck M, Frid A, Hermansen K et al. Efficacy and safety comparison of liraglutide, glimepiride, and placebo, all in combination with metformin, in type 2 diabetes: the LEAD (liraglutide effect and action in diabetes)-2 study. Diabetes Care 2009; 32(1): 84–90.
45. Pratley RE, Nauck M, Bailey T et al. Liraglutide versus sitagliptin for patients with type 2 diabetes who did not have adequate glycaemic control with metformin: a 26-week, randomised, parallel-group, open-label trial. Lancet 2010; 375(9724): 1447–1456.
46. Robinson LE, Holt TA, Rees K et al. Effects of exenatide and liraglutide on heart rate, blood pressure and body weight: systematic review and meta-analysis. BMJ open 2013; 3(1). Dostupné z DOI: <http://dx.doi.org/10.1136/bmjopen-2012–001986>.
47. Hermansen K, Baekdal TA, During M et al. Liraglutide suppresses postprandial triglyceride and apolipoprotein B48 elevations after a fat-rich meal in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled, cross-over trial. Diabetes Obes Metab 2013; 15(11): 1040–1048.
48. Marso SP, Poulter NR, Nissen SE et al. Design of the liraglutide effect and action in diabetes: evaluation of cardiovascular outcome results (LEADER) trial. Am Heart J 2013; 166(5): 823–830e5. Dostupné z DOI: <http://dx.doi.org/10.1016/j.ahj.2013.07.012>.
49. Scirica BM, Bhatt DL, Braunwald E et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med 2013; 369(14): 1317–1326.
50. White WB, Cannon CP, Heller SR et al. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med 2013; 369(14): 1327–1235.
Labels
Diabetology Endocrinology Internal medicineArticle was published in
Internal Medicine
2015 Issue 7-8
Most read in this issue
- Ordinary disease – appendicitis
- Transcatheter aortic valve implantation – diagnostic, procedure and outcomes
- Hepatorenal syndrome – pathophysiology, diagnosis and treatment
-
Erectile dysfunction as the first sign of systemic vascular diseases and of organovascular arterial ischemic diseases.
Guidelines and Challenge of the Angiology section of Slovak Medical Chamber (AS SMC, 2015)