#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Myocardial dysfunction in sepsis –  definition and pathogenetic mechanisms


Authors: K. Muriová;  J. Maláska;  F. Otevřel;  M. Slezák;  M. Kratochvíl;  P. Ševčík
Authors‘ workplace: Klinika anesteziologie, resuscitace a intenzivní medicíny Lékařské fakulty MU a FN Brno, pracoviště Bohunice, přednosta prof. MU Dr. Pavel Ševčík, CSc.
Published in: Vnitř Lék 2010; 56(3): 220-225
Category: Reviews

Overview

Sepsis is considered to be the major cause of morbidity and mortality of patients hospitalised in intensive care. It’s defined as a systemic inflammatory response of organism to infection. Incidence of myocardial dysfunction in studies with severe sepsis patients is up to two thirds of patients. Cardiac dysfunction shows a continuum from isolated and mild diastolic dysfunction to combined severe diastolic and systolic failure of both ventricles mimicking even cardiogenic shock in some patients. Typical features of septic myocardial dysfunction (SMD) are decrease in ejection fraction (EF) with dilatation of ventricles, e. g. increase in end‑diastolic volume (EDV). Reversi­bility of myocardial dysfunction during a period from 7 to 10 days in survivors is other typical manifestation of SMD. Hence, one can speculate that development of such a type of SMD as a temporary protective compensatory mechanism could be advantageous for of an individual patient. A large body of evidence about mechanisms of SMD was described; endothelial dysfunction with consequent microcirculatory and mitochondrial dysfunction and role of circulating factors are considered to be the most important.

Key words:
sepsis –  myocardial dysfunction –  endothelium –  cytokines –  NO –  mitochondria –  troponin –  BNP


Sources

1. Angus DC, Linde- Zwirble WT, Lidicker Jet al. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med 2001; 29: 1303– 1310.

2. Martin GS, Mannino DM, Eaton S et al. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 2003; 348: 1546– 1554.

3. Vincent JL, Sakr Y, Sprung CL et al. Sepsis in European intensive care units: results of the SOAP study. Crit Care Med 2006; 34: 344– 353.

4. Gupta A, Brahmbhatt S, Kapoor R et al. Chronic peritoneal sepsis: myocardial dysfunction, endothelin and signaling mechanisms. Front Biosci 2005; 10: 3183– 3205.

5. Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. N Engl J Med 2003; 348: 138– 150.

6. Waisbren BA. Bacteremia due to gram- negative bacilli other than the Salmonella; a clinical and therapeutic study. AMA Arch Intern Med 1951; 88: 467– 488.

7. Belcher E, Mitchell J, Evans T. Myocardial dysfunction in sepsis: no role for NO? Heart 2002; 87: 507– 509.

8. Maeder M, Fehr T, Rickli H et al. Sepsis‑associated myocardial dysfunction: diagnostic and prognostic impact of cardiac troponins and natriuretic peptides. Chest 2006; 129: 1349– 1366.

9. Parker MM, Shelhamer JH, Bacharach SL et al. Profound but reversible myocardial depression in patients with septic shock. Ann Intern Med 1984; 100: 483– 490.

10. Parker MM, McCarthy KE, Ognibene FP et al. Right ventricular dysfunction and dilatation, similar to left ventricular changes, characterize the cardiac depression of septic shock in humans. Chest 1990; 97: 126– 131.

11. Poelaert J, Declerck C, Vogelaers D et al. Left ventricular systolic and diastolic function in septic shock. Intensive Care Med 1997; 23: 553– 560.

12. Vieillard‑ Baron A, Caille V, Charron C et al. Actual incidence of global left ventricular hypokinesia in adult septic shock. Crit Care Med 2008; 36: 1701– 1706.

13. Hinshaw LB, Archer LT, Spitzer JJ et al. Effects of coronary hypotension and endotoxin on myocardial performance. Am J Physiol 1974; 227: 1051– 1057.

14. Hotchkiss RS, Rust RS, Dence CS et al. Evaluation of the role of cellular hypoxia in sepsis by the hypoxic marker 18Ffluoromisonidazole. Am J Physiol 1991; 261: R965– R972.

15. Cunnion RE, Schaer GL, Parker MM et al. The coronary circulation in human septic shock. Circulation 1986; 73: 637– 644.

16. Mebazaa A, De Keulenaer GW, Paqueron X et al. Activation of cardiac endothelium as a compensatory component in endotoxin‑induced cardiomyopathy: role of endothelin, prostaglandins, and nitric oxide. Circulation 2001; 104: 3137– 3144.

17. Rudiger A, Singer M. Mechanisms of sepsis‑induced cardiac dysfunction. Crit Care Med 2007; 35: 1599– 1608.

18. Zhu X, Bernecker OY, Manohar NS et al. Increased leakage of sarcoplasmic reticulum Ca2+ contributes to abnormal myocyte Ca2+ handling and shortening in sepsis. Crit Care Med 2005; 33: 598– 604.

19. Larche J, Lancel S, Hassoun SM et al. Inhibition of mitochondrial permeability transition prevents sepsis‑induced myocardial dysfunction and mortality. J Am Coll Cardiol 2006; 48: 377– 385.

20. Brealey D, Karyampudi S, Jacques TS et al. Mitochondrial dysfunction in a long‑term rodent model of sepsis and organ failure. Am J Physiol Regul Integr Comp Physiol 2004; 286: R491– R497.

21. Levy RJ, Deutschman CS. Cytochrome c oxidase dysfunction in sepsis. Crit Care Med 2007; 35 (9 Suppl): S468– S475.

22. Suliman HB, Welty‑ Wolf KE, Carraway M et al. Lipopolysaccharide induces oxidative cardiac mitochondrial damage and bio­genesis. Cardiovasc Res 2004; 64: 279– 288.

23. Murray AJ, Anderson RE, Watson GC et al. Uncoupling proteins in human heart. Lancet 2004; 364: 1786– 1788.

24. Hotchkiss R, Nunnally I, Lindquist S et al. Hyperthermia protects mice against the lethal effects of endotoxin. Am J Physiol 1993; 265: R1447– R1457.

25. Das DK, Maulik N. Mitochondrial function in cardiomyocytes: target for cardioprotection. Curr Opin Anaesthesiol 2005; 18: 77– 82.

26. Carlson DL, Horton JW. Cardiac molecular signaling after burn trauma. J Burn Care Res 2006; 27: 669– 675.

27. Wu LL, Yang SL, Yang RC et al. G protein and adenylate cyclase complex‑ mediated signal transduction in the rat heart during sepsis. Shock 2003; 19: 533– 537.

28. Annane D, Trabold F, Sharshar T et al. Inappropriate sympathetic activation at onset of septic shock: a spectral analysis approach. Am J Respir Crit Care Med 1999; 160: 458– 465.

29. Macarthur H, Westfall TC, Riley DP et al. Inactivation of catecholamines by superoxide gives new insights on the pathogenesis of septic shock. Proc Natl Acad Sci USA 2000; 97: 9753– 9758.

30. Bohm M, Kirchmayr R, Gierschik P et al. Increase of myocardial inhibitory G‑ proteins in catecholamine‑ refractory septic shock or in septic multiorgan failure. Am J Med 1995; 98: 183– 186.

31. Schmidt HB, Werdan K, Muller‑ Werdan U. Autonomic dysfunction in the ICU patient. Curr Opin Crit Care 2001; 7: 314– 322.

32. Kumar A, Bunnell E, Lynn M et al. Experimental human endotoxemia is associated with depression of load‑ independent contractility indices: prevention by the lipid an analogue E5531. Chest 2004; 126: 860– 867.

33. Tavener SA, Long EM, Robbins SM et al. Immune cell Toll‑like receptor 4 is required for cardiac myocyte impairment during endotoxemia. Circ Res 2004; 95: 700– 707.

34. Knuefermann P, Sakata Y, Baker JS et al. Toll‑like receptor 2 mediates Staphylococcus aureus‑induced myocardial dysfunction and cytokine production in the heart. Circulation 2004; 110: 3693– 3698.

35. Reilly AM, Sun X, Williams DA et al. Dexamethasone inhibits endotoxin‑induced changes in calcium and contractility in rat isolated papillary muscle. Cell Calcium 1999; 26: 1– 8.

36. Parrillo JE, Burch C, Shelhamer JH et al. A circulating myocardial depressant substance in humans with septic shock. Septic shock patients with a reduced ejection fraction have a circulating factor that depresses in vitro myocardial cell performance. J Clin Invest 1985; 76: 1539– 1553.

37. Pathan N, Hemingway CA, Alizadeh AA et al. Role of interleukin 6 in myocardial dysfunction of meningococcal septic shock. Lancet 2004; 363: 203– 209.

38. Meng X, Ao L, Meldrum DR et al. TNF‑alpha and myocardial depression in endotoxemic rats: temporal discordance of an obligatory relationship. Am J Physiol 1998; 275: R502– R508.

39. Kadokami T, McTiernan CF, Kubota Tet al. Effects of soluble TNF receptor treatment on lipopolysaccharide‑induced myocardial cytokine expression. Am J Physiol Heart Circ Physiol 2001; 280: H2281– H2291.

40. Piper RD. Myocardial dysfunction in sepsis. Clin Exp Pharmacol Physiol 1998; 25: 951– 954.

41. Sharma AC. Sepsis‑induced myocardial dysfunction. Shock 2007; 28: 265– 269.

42. Dinarello CA. Interleukin‑1beta. Crit Care Med 2005; 33 (12 Suppl): S460– S462.

43. Reinhart K, Bayer O, Brunkhorst F et al. Markers of endothelial damage in organ dysfunction and sepsis. Crit Care Med 2002; 30 (5 Suppl): S302– S312.

44. Calandra T, Echtenacher B, Roy DL et al. Protection from septic shock by neutralization of macrophage migration inhibitory factor. Nat Med 2000; 6: 164– 170.

45. Chagnon F, Metz CN, Bucala R et al. Endotoxin‑induced myocardial dysfunction: effects of macrophage migration inhibitory factor neutralization. Circ Res 2005; 96: 1095– 1102.

46. Fernandes CJ Jr., Akamine N, Knobel E. Myocardial depression in sepsis. Shock 2008; 30 (Suppl 1): 14– 17.

47. Massion PB, Moniotte S, Balligand JL. Nitric oxide: does it play a role in the heart of the critically ill? Curr Opin Crit Care 2001; 7: 323– 336.

48. Price S, Anning PB, Mitchell JA et al. Myocardial dysfunction in sepsis: mechanisms and therapeutic implications. Eur Heart J 1999; 20: 715– 724.

49. Steendijk P. The role of inducible nitric oxide synthase in the evolution of myocardial (dys)function during resuscitated septic shock: the missing loop. Crit Care Med 2006; 34: 545– 547.

50. Flierl MA, Rittirsch D, Huber- Lang MS et al. Molecular events in the cardiomyopathy of sepsis. Mol Med 2008; 14: 327– 336.

51. Hare JM, Loh E, Creager MA et al. Nitric oxide inhibits the positive inotropic response to beta‑adrenergic stimulation in humans with left ventricular dysfunction. Circulation 1995; 92: 2198– 2203.

52. Schulz R, Dodge KL, Lopaschuk GD et al. Peroxynitrite impairs cardiac contractile function by decreasing cardiac efficiency. Am J Physiol 1997; 272: H1212– H1219.

53. Chen Y, Traverse JH, Du R et al. Nitric oxide modulates myocardial oxygen consumption in the failing heart. Circulation 2002; 106: 273– 279.

54. Wink DA, Hanbauer I, Krishna MC et al. Nitric oxide protects against cellular damage and cytotoxicity from reactive oxygen species. Proc Natl Acad Sci USA 1993; 90: 9813– 9817.

55. Nisoli E, Clementi E, Paolucci C et al. Mitochondrial bio­genesis in mammals: the role of endogenous nitric oxide. Science 2003; 299: 896– 899.

Labels
Diabetology Endocrinology Internal medicine

Article was published in

Internal Medicine

Issue 3

2010 Issue 3

Most read in this issue
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#