Analýza těkavých plynů ve vydechovaném vzduchu u nemocných s idiopatickými střevními záněty
Authors:
Luděk Hrdlička 1; K. Dryahina 2; D. Ďuricová 1; M. Bortlík 1; N. Machková 1; P. Španěl 2; M. Lukáš 1,3
Authors‘ workplace:
Klinické a výzkumné centrum pro střevní záněty, ISCARE Lighthouse a 1. LF UK v Praze
1; Ústav fyzikální chemie J. Heyrovského, AV ČR
2; Ústav klinické biochemie a laboratorní diagnostiky, 1. LF UK v Praze
3
Published in:
Gastroent Hepatol 2012; 66(2): 125-130
Category:
IDB: Original Article
Overview
Úvod:
Všechny dostupné metody používané v současnosti v diagnostice a monitoraci aktivity idiopatických střevních zánětů (IBD) mají omezenou senzitivitu a specificitu (RTG metody, biomarkery) nebo jsou přímo spojené s dyskomfortem či přímo se zdravotním rizikem pro pacienta (opakované endoskopie a CT vyšetření). Proto je legitimní snahou hledat nové neinvazivní diagnostické metody. Analýza koncentrace těkavých stopových metabolitů v dechu je potenciálním markerem v diagnostice IBD a monitoraci aktivity onemocnění. Hmotnostní spektrometrie v proudové trubici s vybranými ionty (SIFT-MS) je nová metoda pro kvantitativní analýzu stopových plynů zejména v lidském dechu.
Metody a soubor pacientů:
V naší pilotní studii bylo SIFT-MS užito pro analýzu přítomnosti těkavých biomarkerů IBD v dechu pacientů, rozdíly v jejich koncentracích byly zkoumány ve vztahu k přítomnosti IBD a aktivitě choroby. Soubor tvořilo celkem 48 IBD pacientů, 28 s ulcerózní kolitidou (UC) a 20 s Crohnovou chorobou (CD) (25 žen a 23 mužů), průměrný věk pacientů byl 30 let a délka trvání choroby 10 let.
Výsledky:
Významné rozdíly mezi podskupinami pacientů byly zjištěny v koncentracích pentanu, sirouhlíku, acetonu a propanolu: koncentrace pentanu byla signifikantně zvýšena u pacientů s CD (aktivní i v remisi) oproti kontrolní skupině zdravých jedinců (115 vs 61 nmol/mol; p < 0,01) stejně jako u nemocných s aktivní UC (91 vs 61 nmol/mol; p < 0,01). Koncentrace sirouhlíku byla signifikantně zvýšena u pacientů s aktivní CD (111 vs 50 nmol/mol; p < 0,01) a konečně koncentrace acetonu (1 495 vs 509 nmol/mol; p < 0,01) a propanolu byly signifikantně zvýšeny u pacientů, kteří v den měření absolvovali kolonoskopii (pravděpodobný podíl lačnění).
Závěr:
Na základě výsledků našeho pilotního projektu považujeme užití dechové analýzy pomocí SIFT-MS za přínosné v neinvazivní diagnostice a monitoraci aktivity IBD. Další cílené studie této problematiky jsou nutné.
Klíčová slova:
nespecifické střevní záněty – biomarkery – těkavé organické sloučeniny – dechová analýza – hmotnostní spektrometrie v proudové trubici s vybranými ionty – SIFT-MS
Ulcerozní kolitida (UC) a Crohnova choroba (CD) jsou hlavní fenotypové projevy idiopatických střevních zánětů (IBD), které postihují zejména tlusté a tenké střevo. Etiologie a patogeneze těchto chorob není stále jednoznačně objasněna. Obě choroby významně zhoršují kvalitu života a mají pro své nositele negativní socioekonomický dopad [1]. Všechny dostupné léčebné postupy, medikamentozní i chirurgické [2], mohou sice zlepšit symptomatologii pacientů, doposud však nebyla objevena léčba kauzální. Endoskopie (ileokolonoskopie, enteroskopie a gastroskopie), CT nebo MRI enterografie a sonografie jsou v současné době dominující metody v diagnostice a diferenciální diagnostice IBD [3]. Pro stanovení optimálního plánu terapie a dispenzarizace pacienta je nezbytné pravidelné klinické monitorování aktivity choroby, sledování hladiny biologických markerů (sérový CRP, fekální kalprotektin) a provedení zobrazovacích (RTG) a endoskopických vyšetření. Všechny v současné době užívané testy mají určité limitace: omezenou senzitivitu (CRP, RTG metody), specificitu (CRP, kalprotektin, zobrazovací metody), některé z nich přináší pacientovi navíc dyskomfort či přímo zdravotní riziko (endoskopie, RTG metody). Proto je třeba hledat nové a přesné neinvazivní metody pro diagnostiku a monitoraci aktivity IBD.
Zánětlivé změny při IBD způsobují ve střevní sliznici oxidativní stres, jehož důsledkem je degradace buněčných membrán cestou lipidové peroxidace [4,5]. Těkavé organické sloučeniny [6], včetně alkanů [7], které při tom vznikají, jsou transportovány krví do plic a zde exhalovány [8,9]. Tyto těkavé látky lze nově v dechu nemocných kvantitativně stanovovat pomocí hmotnostní spektrometrie v proudové trubici s vybranými ionty (SIFT-MS). V literatuře nacházíme ojedinělé studie, které k diagnostice stopových sloučenin používaly méně senzitivní dechové analyzátory. Rozsáhlejší práce na reprezentativním počtu pacientů dosud nebyly publikovány. Bodelierova studie z r. 2009 [6] naznačuje použitelnost nejméně šesti těkavých sloučenin v diagnostice IBD.
Hlavním cílem našeho pilotního projektu bylo ověření možnosti využití analýzy dechu pomocí hmotnostní spektrometrie v proudové trubici s vybranými ionty (SIFT-MS) v diagnostice a monitoraci aktivity UC a CD. Primárně bylo nutné identifikovat specifické organické těkavé sloučeniny v dechu nemocných, které mohou být vhodným biologickým markerem přítomnosti a aktivity IBD. Následně byly statistickou analýzou naměřených koncentrací určených sloučenin v jednotlivých skupinách pacientů (UC/CD, aktivní a neaktivní choroba, kontrolní skupina bez IBD) posouzeny rozdíly v koncentracích jednotlivých vydechovaných látek.
Metodika
Analýza dechu byla provedena během měření v Klinickém a výzkumném centrum pro střevní záněty ISCARE Praha v listopadu a prosinci 2011. Studie byla provedena ve spolupráci s pracovníky oddělení spektroskopie Ústavu fyzikální chemie J. Heyrovského AV ČR. Tento tým má rozsáhlé zkušenosti s vývojem SIFT-MS a její aplikací v plynové analýze včetně výzkumu v biomedicíně. Analýza byla provedena přístrojem Profile 3, který byl po dobu měření umístěn v centru ISCARE. Studie byla schválena místní etickou komisí a všichni pacienti podepsali informovaný souhlas.
Do souboru bylo zahrnuto celkem 48 IBD pacientů. Jednalo se o 20 nemocných s CD (9 klinicky aktivních, 11 v remisi) a 28 pacientů s UC (15 klinicky aktivních, 13 v remisi). Pro zhodnocení aktivity choroby bylo použito Harvey-Bredshaw indexu (HBI) u CD a parciálního Mayo skóre (PMS) u UC. Žen bylo v našem souboru 25 (52 %), mužů pak 23 (48 %), průměrný věk pacientů byl 30 let a průměrná doby trvání choroby 10 let. Kontrolní skupinu tvořilo 33 zdravých jedinců průměrného věku 22 let bez IBD onemocnění. Analýza vydechovaného vzduchu byla provedena přímým odběrem vzorku s okamžitým vyhodnocením iontových signálů. Získaná data byla zpracována použitím standardních deskriptivních metod – průměr (± SD) nebo medián pro spojitá data, procentuální zastoupení pro kategorická data. Rozdíly v koncentraci identifikovaných těkavých látek mezi jednotlivými skupinami byly porovnány pomocí parametrických (nepárový t-test), na hladině významnosti p < 0,05.
Cílem následujícího odstavce je velice stručně nastínit princip metody SIFT-MS, další podrobnosti jsou uvedeny v citované literatuře [10,11]. Mikrovlnný doutnavý výboj ve vzduchu vytváří směs kladných iontů, ze které jsou pomocí kvadrupolového hmotnostního filtru vybrány ionty s danou hodnotou poměru hmotnosti k náboji, m/z. Tyto prekurzorové ionty, H3O+ (m/z 19), NO+ (m/z 30) nebo O2+ (m/z 32) jsou vstřelovány do helia proudícího jako nosný plyn proudovou trubicí. Kontinuální proud vzorkovaného vzduchu je přimísen do tohoto nosného plynu pomocí kalibrované vyhřívané kapiláry a reaguje zde s prekurzorovými ionty unášenými konvekcí nosného plynu helia. Vyhřívání vzorkovací kapiláry na 70 °C zabraňuje kondenzaci vodní páry a jiných látek na jejím vnitřním povrchu. Prekurzorové ionty reagují s molekulami stopových plynů a těkavých látek během definovaného reakčního času určeného délkou proudové trubice a čerpací rychlostí vývěvy odsávající nosný plyn s příměsí vzorku z proudové trubice. Tyto reakce vedou pro jednotlivé stopové látky k tvorbě charakteristických produktových iontů, jejichž hmotnost umožňuje identifikaci látek a jejich počet detekovaný násobičem hmotnostního spektrometru v časovém intervalu desetin sekundy slouží pro výpočet koncentrace látek přítomných ve vzorku. Analytický hmotnostní spektrometr umožňuje pořízení hmotnostních spekter v rozsahu m/z od 10 do 300. Zjednodušené schéma SIFT-MS je znázorněno na obr. 1. Data získaná pro přímou analýzu dechu mají podobu časových profilů koncetrací získaných v režimu „multiple ion monitoring (MIM)“, blíže viz [11]. Příklad typického výsledku analýzy tří po sobě jdoucích výdechů jednoho pacienta je znázorněn na obr. 2.
Výsledky
Průměrné koncentrace jednotlivých látek přítomných v dechu pacientů jsou uvedeny v tab. 1. Převážná část látek nevykazuje statisticky významné rozdíly mezi skupinami pacientů. U některých metabolitů jsme ovšem pozorovali podstatné rozdíly v jejich koncentraci v závislosti na diagnóze a aktivitě střevního zánětu. Pentan je významně zvýšený u pacientů v aktivní i klidové fázi CD (115 vs 61 nmol/mol; p < 0,01) a u pacientů s aktivní UC charakterizované indexem aktivity (parciální Mayo skore) vyšším než 3 (91 vs 61 nmol/mol; p < 0,01). V porovnání se zdravými kontrolami je sirouhlík (CS2) významně zvýšený (111 vs 50 nmol/mol; p < 0,01) u CN pouze u aktivních pacientů s indexem aktivity (Harvey-Bradshaw) vyšším než 3.
Zajímavé bylo zjištění, že je nápadný vliv lačnění a přípravy střeva před koloskopickým vyšetřením na složení dechu. Aceton je signifikantně zvýšen u skupiny, která prodělala koloskopické vyšetření v den provedení dechového testu ve srovnání s ostatními pacienty (1 495 vs 509 nmol/mol; p < 0,01). Podobné zvýšení bylo pozorováno pro propanol. Zvýšená koncentrace acetonu byla pozorována také u tří pacientů bez koloskopie.
Diskuze
Již po staletí je známou skutečností, že zápach lidského dechu může být v některých případech indikátorem nebo symptomem chorobného stavu. Nástroje k přesnému měření koncentrace sloučenin v dechu obsažených jsou však k dispozici jen několik málo let. Vývoj vhodných technik použitelných k přesné kvantifikaci stopových plynů ve vydechovaném vzduchu byl rozhodujícím krokem k realizaci využití této myšlenky v biomedicíně – v diagnostice a terapeutické monitoraci [12,13]. V lidském dechu jsou přítomny rozličné těkavé sloučeniny v miniaturních koncentracích, které se pohybují od 1 : 106 (10 nmol/mol; parts per milion) až po 1 : 109 (1 nmol/mol; parts per bilion) molekul vzduchu. Od původních studií, které využívaly techniku plynové chromatografie, bylo zřejmé, že ve vydechovaném vzduchu existují stovky různých těkavých sloučenin [14], ale pouze malá část z nich byla doposud identifikována a ještě méně jich bylo kvantifikováno. V současné době je také zcela zřejmé, že část těchto sloučenin je exogenního původu a do lidského organizmu se dostala plícemi při dýchání nebo přestupem přes kožní nebo střevní slizniční bariéru. Je také patrné, že velká část těchto těkavých sloučenin se vyskytuje ve stopových koncentracích i v dechu zcela zdravých jedinců, zatímco koncentrace některých jiných látek je významně zvýšena v dechu pacientů s určitými chorobami. Dobře známým příkladem takového stopového biomarkeru je aceton způsobující sladký (ovocný) zápach dechu pacientů s dekompenzovaným diabetem [15,16]. Dalšími příklady takových biomarkerů jsou amoniak u ledvinné nedostatečnosti, oxid dusný u astmatu a ethan nebo pentan u oxidačního stresu [12]. Spektrum detekovaných sloučenin je velmi široké, od dvojatomového oxidu dusného, přes metan a amoniak [17], až po molekuly, jako jsou metanol, etanol, propanol, aldehydy (včetně acetaldehydu), aceton a jiné ketony. V komplexu vydechovaného vzduchu se vyskytuje i velmi malý podíl úhlovodíků s C4–C12 řetězcem a mnohé další druhy organických sloučenin. Vývoj nových technik přináší další analytické možnosti v identifikaci a stanovení koncentrace stopových plynů a hledání nových biomarkerů v dechu. Nicméně pouze u několika málo molekul bylo dosaženo spolehlivého a přesného měření koncentrace. V případě pozitivní identifikace specifického biomarkeru ve výzkumu může být monitorace jeho koncentrace využita pro klinickou diagnostiku. Z experimentálního diagnostického přístroje může být vyvinut klinicky ověřený diagnostický přístroj pro monitoraci jednoho specifického biomarkeru. V případě oxidu dusného (N2O) jako biomarkeru astmatu trval vývoj klinicky ověřeného příručního diagnostického přístroje více než 10 let od objevení NO v dechu astmatiků v roce 1991 [18]. V současné době je již tento přístroj standardně užíván v ordinacích pneumologů a alergologů [19].
Hmotnostní spektrometrie v proudové trubici s vybranými ionty, SIFT-MS [10,11] představuje poměrně novou analytickou techniku pro okamžité a přesné měření koncentrací stopových plynů a par ve vzduchu a lidském dechu. Tato metoda používá chemickou ionizaci v přístroji SIFT a je založená na původních experimentech provedených v roce 1995 [20]. Výhody použití této metody pro dechové testy spočívají zejména v její neinvazivnosti, jednoduchosti, rychlosti a bezbolestnosti. Konkrétní přínos SIFT-MS pro analýzu dechu je v tom, že umožňuje přesnou kvantifikaci několika stopových plynů přítomných v lidském dechu současně, a to v koncentracích v současnosti nad 10 nmol/mol (tj. jedna molekula látky na sto milionů molekul vzduchu). Kromě analýzy dechu je možno tuto metodu použít pro rozbor těkavých látek vypařovaných z kapalin jako moč nebo sérum. Ve světě v současnosti probíhá několik výzkumných programů zaměřených na použití SIFT-MS pro diagnostiku konkrétních nemocí (cystická fibróza, rakovina plic a jícnu, kardiovaskulární nemoci a další).
Předchozí studie zabývající se možnostmi využití exhalovaných a střevních plynů v IBD diagnostice ukazují, že by se mohlo jednat o slibné téma výzkumu, rozsáhlejší práce na reprezentativním počtu pacientů dosud nebyly publikovány. Recentní práce Bodeliera [6] zahrnuje víceméně semikvantitativní analýzu vydechovaného vzduchu a prokázala nejméně šest těkavých sloučenin perspektivně použitelných v diagnostice IBD.
Zvýšená koncentrace acetonu ve vydechovaném vzduchu je způsobena nedostatečnou výživou, a to buď akutně kvůli přípravě na kolonoskopické vyšetření anebo také v důsledku aktivity IBD. Zvýšená koncentrace pentanu je způsobená zánětlivým procesem a potvrzuje předchozí výsledky stanovené pomocí jiných analytických metod [4,5,7–9].
Výsledky našeho pilotního projektu přináší velmi nadějné výsledky opravňující považovat metodu za perspektivně přínosnou v diagnostice i monitorování aktivity choroby u chronických střevních onemocnění. Vysoká koncentrace pentanu je signifikantní pro přítomnost CD. Identifikované sloučeniny a výsledky měření jsou dobrým základem pro design dalších, tentokrát již cílených projektů, které musí nutně následovat. Jejich výsledkem by mělo být vytvoření reprodukovatelného protokolu odběru vydechovaného vzduchu a určení prediktivní hodnoty identifikovaných těkavých organických sloučenin v neinvazivní diagnostice a monitoraci aktivity IBD. V neposlední řadě plánujeme ověřit původ těchto látek ve střevním plynu jeho analýzou při koloskopii a komparací získaných dat s plynem exhalovaným.
Dále bude nutné standardizovat dietní přípravu před dechovým testem – v prováděné studii byl pouze vyloučen alkohol den před a v den provedení dechového testu a dlouhodobá restrikce příjmu potravy, získaná data (koncentrace acetonu a propanolu jsou signifikantně zvýšené u pacientů, kteří v den dechového testu absolvovali kolonoskopické vyšetření) však ukazují i na vliv byť jen krátkodobého lačnění při přípravě k endoskopickému vyšetření.
Závěr
Na základě výsledků našeho pilotního projektu považujeme užití dechové analýzy pomocí SIFT-MS za perspektivní a přínosné v diagnostice a monitorování aktivity IBD. Signifikantní rozdíly v koncentracích několika sledovaných metabolitů přinášejí slibné vyhlídky na budoucí užití metody v neinvazivním sledování pacientů s IBD. Další studie by měly ověřit použitelnost metody v klinické praxi a zkoumat původ těchto stopových metabolitů.
Projekt byl realizován s podporou nadačního fondu IBD – Comfort.
Autoři deklarují, že v souvislosti s předmětem studie nemají žádné komerční zájmy.
Redakční rada potvrzuje, že rukopis práce splnil ICMJE kritéria pro publikace zasílané do biomedicínských časopisů.
Doručeno: 10. 1. 2012
Přijato: 31. 1. 2012
MUDr. Luděk Hrdlička
Klinické a výzkumné centrum pro střevní záněty, ISCARE a 1. LF UK v Praze
Jankovcova 1569/2C
170 04 Praha 7
ludek.hrdlicka@post.cz
Sources
1. Lukas M, Bortlik M, Maratka Z. What is the origin of ulcerative colitis? Still more questions than answers. Postgrad Med J 2006; 82(972): 620–625.
2. Hanauer SB, Sandborn WJ, Rutgeerts P et al. Human anti-tumor necrosis factor monoclonal antibody (adalimumab) in Crohn's disease: the CLASSIC-I trial. Gastroenterology 2006; 130(2): 323–332.
3. Kirsner J, Sartor R, Sandborn W. Kirsner's inflammatory bowel diseases 6-th edition. Edtion ed.: Saunders 2004.
4. Kokoszka J, Nelson RL, Swedler WI et al. Determination of inflammatory bowel-disease activity by breath pentane analysis. Dis Colon Rectum 1993; 36(6): 597–601.
5. Ondrula D, Nelson RL, Andrianopulos G et al. Quantitative-determination of pentane in exhaled air correlates with colonic inflammation in the rat colitis model. Dis Colon Rectum 1993; 36(5): 457–462.
6. Bodlier A, Pierik MJ, Dallinga JW et al. Analysis of Volatile Organic Compounds in Exhaled Air As a Non Invasive Biomarker for Inflammatory Bowel Disease (IBD). Gastroenterology 2009; 136(5): A35.
7. Sedghi S, Keshavarzian A, Klamut M et al. Elevated breath ethane levels in active ulcerative-colitis – evidence for excessive lipid-peroxidation. Am J Gastroenterol 1994; 89(12): 2217–2221.
8. Pelli MA, Trovarelli G, Capodicasa E et al. Breath alkanes determination in ulcerative colitis and Crohn's disease. Dis Colon Rectum 1999; 42(1): 71–76.
9. Probert CSJ, Ahmed I, Khalid T et al. Volatile Organic Compounds as Diagnostic Biomarkers in Gastrointestinal and Liver Diseases. J Gastrointestin Liver Dis 2009; 18(3): 337–343.
10. Smith D, Spanel P. Selected ion flow tube mass spectrometry (SIFT-MS) for on-line trace gas analysis. Mass Spectrom Rev 2005; 24(5): 661–700.
11. Spanel P, Smith D. Progress in SIFT-MS; breath analysis and other applications. Mass Spectrom Rev 2011; 30(2): 236–267.
12. Amann A, Smith D. Breath Analysis for Clinical Diagnosis and Therapeutic Monitoring. In. Singapore: World Scientific 2005: 536.
13. Smith D, Spanel P. The challenge of breath analysis for clinical diagnosis and therapeutic monitoring. Analyst 2007; 132(5): 390–396.
14. Miekisch W, Schubert JK, Noeldge--Schomburg GFE. Diagnostic potential of breath analysis – focus on volatile organic compounds. Clin Chim Acta 2004; 347(1–2): 25–39.
15. Tasspou CN, Barnett D, Fraser TR. Breath-acetone and blood-sugar Measurements in diabetes. Lancet 1969; 1(7609): 1282–1286.
16. Turner C, Spanel P, Smith D. A longitudinal study of ammonia, acetone and propanol in the exhaled breath of 30 subjects using selected ion flow tube mass spectrometry, SIFT-MS. Physiol Meas 2006; 27(4): 321–337.
17. Hibbard T, Killard AJ. Breath Ammonia Analysis: Clinical Application and Measurement. Critical Reviews in Analytical Chemistry 2011; 41(1): 21–35.
18. Gustaffson LE, Leone AM, Persson MG et al. Endogenous nitric oxide is present in the exhaled air of rabbits, guinea pigs and humans. Biochem Biophys Res Commun 1991; 181(2): 852–857.
19. Sachs-Olsen C, Carlsen KCL, Mowinckell P et al. Diagnostic value of exhaled nitric oxide in childhood asthma and allergy. Pediat Allergy and Immunol 2010; 21(1): E213–E221.
20. Spanel P, Smith D. Selected ion flow tube: A technique for quantitative trace gas analysis of air and breath. Med Biol Eng Comput 1996; 34(6): 409–419.
Labels
Paediatric gastroenterology Gastroenterology and hepatology SurgeryArticle was published in
Gastroenterology and Hepatology
2012 Issue 2
Most read in this issue
- Hepatorenálny syndróm u pacientov s akútnou alkoholovou hepatitídou
- Súčasný prístup k anémii u pacientov s nešpecifickými črevnými zápalmi
- Liečba achalázie – súčasný prístup a vlastné skúsenosti
- Prof. Jiří Nevoral on the occasion of his 70th birthday