Association between lean mass and fractures in patients with anamnesis of juvenile idiopathic arthritis
Authors:
K. Brábníková Marešová; K. Jarošová; J. Štěpán
Authors‘ workplace:
Revmatologický ústav a Revmatologická klinika, 1. lékařská fakulta, Univerzita Karlova v Praze
Published in:
Čes. Revmatol., 18, 2010, No. 1, p. 12-18.
Category:
Original Papers
Overview
Objective:
Juvenile idiopathic arthritis (JIA) is associated with an increased fracture risk throughout the life. The aim of this study was to investigate factors contributing to an increased occurrence of fractures in young adults with JIA. Patients and methods: In 23 patients with JIA (who met the criteria for the treatment with biological agents, and in whom the treatment has yet to be initiated) and 52 healthy controls, bone mineral density, body composition, tests of lower extremity function and biochemical markers of bone remodeling were measured. Results: JIA was diagnosed at an average age of 9.9 ± 4.9 years, and the mean duration of the disease was 15.4 ± 8.4 years. At the time of examination, clinical and laboratory activity of JIA was documented in all of our patients (DAS 28 6.1 ± 1.3). Low bone mass (less than -2 SD in Z score) was found in 61% of patients with JIA (in 71% of patients treated with glucocorticoids, and in 22% of patients treated without glucocorticoids). During the course of the disease, 22% of patients with JIA suffered a low-impact fracture. In our patients, a significant association between the prevalent fracture and low lean mass was observed. The patients had significantly poorer results of the chair-rise test in comparison with healthy controls. Conclusion: Our results confirm a decrease in bone mass of patients with JIA, and highlight the significance of low lean mass as a next potential marker of the risk of fracture.
Key words:
juvenile idiopathic arthritis, fractures, bone mineral density (BMD), lean mass, glucocorticoids
Sources
1. Kanis JA, Johansson H, Oden A, Johnell O, de Laet C, Melton IL, et al. A meta-analysis of prior corticosteroid use and fracture risk. J Bone Miner Res 2004 Jun;19(6): 893–9.
2. Orstavik RE, Haugeberg G, Mowinckel P, Hoiseth A, Uhlig T, Falch JA, et al. Vertebral deformities in rheumatoid arthritis: a comparison with population-based controls. Arch Intern Med. 2004 Feb 23;164(4): 420–5.
3. Cooper C, Coupland C, Mitchell M. Rheumatoid arthritis, corticosteroid therapy and hip fracture. Ann Rheum Dis. 1995 Jan; 54(1): 49–52.
4. Badley BW, Ansell BM. Fractures in Still’s disease. Ann Rheum Dis. 1960 Jun; 19: 135–42.
5. Burnham JM, Shults J, Weinstein R, Lewis JD, Leonard MB. Childhood onset arthritis is associated with an increased risk of fracture: a population based study using the General Practice Research Database. Ann Rheum Dis. 2006 Aug; 65(8): 1074–9.
6. Roth J, Palm C, Scheunemann I, Ranke MB, Schweizer R, Dannecker GE. Musculoskeletal abnormalities of the forearm in patients with juvenile idiopathic arthritis relate mainly to bone geometry. Arthritis Rheum. 2004 Apr; 50(4): 1277–85.
7. Goulding A, Jones IE, Taylor RW, Manning PJ, Williams SM. More broken bones: a 4-year double cohort study of young girls with and without distal forearm fractures. J Bone Miner Res. 2000 Oct; 15(10): 2011–8.
8. Goulding A, Jones IE, Taylor RW, Williams SM, Manning PJ. Bone mineral density and body composition in boys with distal forearm fractures: a dual-energy x-ray absorptiometry study. J Pediatr. 2001 Oct; 139(4): 509–15.
9. Skaggs DL, Loro ML, Pitukcheewanont P, Tolo V, Gilsanz V. Increased body weight and decreased radial cross-sectional dimensions in girls with forearm fractures. J Bone Miner Res. 2001 Jul; 16(7): 1337–42.
10. Schoenau E, Neu CM, Beck B, Manz F, Rauch F. Bone mineral content per muscle cross-sectional area as an index of the functional muscle-bone unit. J Bone Miner Res. 2002 Jun; 17(6): 1095–101.
11. Ma D, Jones G. Television, computer, and video viewing; physical activity; and upper limb fracture risk in children: a population-based case control study. J Bone Miner Res. 2003 Nov; 18(11): 1970–7.
12. Ma D, Morley R, Jones G. Risk-taking, coordination and upper limb fractures in children: a population based case-control study. Osteoporos Int. 2004 Aug; 15(8): 633–8.
13. Goulding A, Jones IE, Taylor RW, Piggot JM, Taylor D. Dynamic and static tests of balance and postural sway in boys: effects of previous wrist bone fractures and high adiposity. Gait Posture. 2003 Apr; 17(2): 136–41.
14. Brostrom E, Hagelberg S, Haglund-Akerlind Y. Effect of joint injections in children with juvenile idiopathic arthritis: evaluation by 3D-gait analysis. Acta Paediatr. 2004 Jul; 93(7): 906–10.
15. Brostrom E, Nordlund MM, Cresswell AG. Plantar- and dorsiflexor strength in prepubertal girls with juvenile idiopathic arthritis. Arch Phys Med Rehabil. 2004 Aug; 85(8): 1224–30.
16. Myer GD, Brunner HI, Melson PG, Paterno MV, Ford KR, Hewett TE. Specialized neuromuscular training to improve neuromuscular function and biomechanics in a patient with quiescent juvenile rheumatoid arthritis. Phys Ther 2005 Aug; 85(8): 791–802.
17. Genant HK, Wu CY, van Kuijk C, Nevitt MC. Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 1993; 8(9): 1137–48.
18. Runge M, Hunter G. Determinants of musculoskeletal frailty and the risk of falls in old age. J Musculoskelet Neuronal Interact. 2006 Apr-Jun; 6(2): 167–73.
19. Murray K, Boyle RJ, Woo LP, et al. Pathological fractures and osteoporosis in a cohort of 103 systemic onset juvenile idiopathic arthritis patients Arthritis Rheum 2000; 43(Suppl): S119.
20. Varonos S, Ansell BM, Reeve J. Vertebral collapse in juvenile chronic arthritis: its relationship with glucocorticoid therapy. Calcif Tissue Int 1987 Aug; 41(2): 75–8.
21. Pepmueller PH, Cassidy JT, Allen SH, Hillman LS. Bone mineralization and bone mineral metabolism in children with juvenile rheumatoid arthritis. Arthritis Rheum 1996 May; 39(5): 746–57.
22. Lien G, Selvaag AM, Flato B, Haugen M, Vinje O, Sorskaar D, et al. A two-year prospective controlled study of bone mass and bone turnover in children with early juvenile idiopathic arthritis. Arthritis Rheum 2005 Mar; 52(3): 833–40.
23. Felin EM, Prahalad S, Askew EW, Moyer-Mileur LJ. Musculoskeletal abnormalities of the tibia in juvenile rheumatoid arthritis. Arthritis Rheum. 2007 Mar; 56(3): 984–94.
24. Burnham JM, Shults J, Sembhi H, Zemel BS, Leonard MB. The dysfunctional muscle-bone unit in juvenile idiopathic arthritis. J Musculoskelet Neuronal Interact 2006 Oct-Dec; 6(4): 351–2.
25. Roth J, Linge M, Tzaribachev N, Schweizer R, Kuemmerle-Deschner J. Musculoskeletal abnormalities in juvenile idiopathic arthritis- a 4-year longitudinal study. Rheumatology (Oxford). 2007 Jul; 46(7): 1180–4.
26. Henderson CJ, Specker BL, Sierra RI, Campaigne BN, Lovell DJ. Total-body bone mineral content in non-corticosteroid-treated postpubertal females with juvenile rheumatoid arthritis: frequency of osteopenia and contributing factors. Arthritis Rheum 2000 Mar; 43(3): 531–40.
27. Henderson CJ, Cawkwell GD, Specker BL, Sierra RI, Wilmott RW, Campaigne BN, et al. Predictors of total body bone mineral density in non-corticosteroid-treated prepubertal children with juvenile rheumatoid arthritis. Arthritis Rheum 1997 Nov; 40(11): 1967–75.
28. Lindehammar H, Lindvall B. Muscle involvement in juvenile idiopathic arthritis. Rheumatology (Oxford). 2004 Dec; 43(12): 1546–54.
29. Lien G, Flato B, Haugen M, Vinje O, Sorskaar D, Dale K, et al. Frequency of osteopenia in adolescents with early-onset juvenile idiopathic arthritis: a long-term outcome study of one hundred five patients. Arthritis Rheum 2003 Aug; 48(8): 2214–23.
30. Zak M, Hassager C, Lovell DJ, Nielsen S, Henderson CJ, Pedersen FK. Assessment of bone mineral density in adults with a history of juvenile chronic arthritis: a cross-sectional long-term followup study. Arthritis Rheum 1999 Apr; 42(4): 790–8.
31. French AR, Mason T, Nelson AM, Crowson CS, O’Fallon WM, Khosla S, et al. Osteopenia in adults with a history of juvenile rheumatoid arthritis. A population based study. J Rheumatol 2002; 29(5): 1065–70.
32. Haugen M, Lien G, Flato B, Kvammen J, Vinje O, Sorskaar D, et al. Young adults with juvenile arthritis in remission attain normal peak bone mass at the lumbar spine and forearm. Arthritis Rheum 2000; 43(7): 1504–10.
33. Bianchi ML. Glucorticoids and bone: some general remarks and some special observations in pediatric patients. Calcif Tissue Int. 2002 May; 70(5): 384–90.
34. Canalis E. Mechanisms of glucocorticoid-induced osteoporosis. Curr Opin Rheumatol 2003 Jul; 15(4): 454–7.
35. Mandel K, Atkinson S, Barr RD, Pencharz P. Skeletal morbidity in childhood acute lymphoblastic leukemia. J Clin Oncol 2004 Apr 1; 22(7): 1215–21.
36. Cranney AB, McKendry RJ, Wells GA, Ooi DS, Kanigsberg ND, Kraag GR, et al. The effect of low dose methotrexate on bone density. J Rheumatol 2001 Nov; 28(11): 2395–9.
Labels
Dermatology & STDs Paediatric rheumatology RheumatologyArticle was published in
Czech Rheumatology
2010 Issue 1
Most read in this issue
- Can the determination of serum procalcitonin be helpful in the differential diagnosis of an infection and an acute exacerbation in patients with a systemic autoimmune disease?
- Prediction of radiographic progression of rheumatoid arthritis
- Significance of vitamin D for human health
- Methodological aspects of cognitive dysfunction diagnosis in patients with systemic lupus erythematosus