Vernix caseoza – composition and function
Authors:
T. Faist
Authors‘ workplace:
Porodnická a gynekologická klinika FN a 1. LF UK, Hradec Králové, přednosta prof. MUDr. J. Špaček, Ph. D., IFEPAG
Published in:
Ceska Gynekol 2020; 85(4): 263-267
Category:
Original Article
Overview
Objective: To summarize current knowledge about the composition and function of the vernix caseoza with respect to the prenatal and postnatal period.
Design: Summary article.
Setting: Department of Obstetrics and Gynecology, University Hospital Hradec Kralove.
Conclusion: According to current knowledge about composition, vernix caseoza consists of desquamate cells from outer layers of epidermidis with proteolipid material. The formation of vernix caseoza is related to the formation of the fetal skin. The lipid content protects a fetus from maceration with amniotic fluid. Vernix caseoza further enhance the process of adaptation during the transition of a newborn from intrauterine to postnatal life. During delivery, vernix caseoza serves mainly as lubricant function. In a postpartum period, verxic caseoza may have moisturizing, antiinflammatory, antioxidative and healing function.
Keywords:
vernix caseoza – corneocyte – fetus – newborn – biofilm
Sources
1. Afsar, FS. Physiological skin conditions of preterm and term neonates. Clin Exp Dermatol, 2010, 35(4), p. 346–350.
2. Agorastos, T., Hollweg, G., Grussendorf, EI., et al. Features of vernix caseosa cells. Am J Perinatol, 1988, 5(3), p. 253–259.
3. Agorastos, T., Lamberti, G., Vlassis, G., et al. Methods of prenatal determination of fetal maturity based on differentiation of the fetal skin during the last weeks of pregnancy. Eur J Obstet Gynecol Reprod Biol, 1986, 22(1–2), p. 29–40.
4. Akinbi, HT., Narendran, V., Pass, AK., et al. Host defense proteins in vernix caseosa and amniotic fluid. Am J Obstet Gynecol, 2004, 191(6), p. 2090–2096.
5. Akiyama, M., Smith, LT., Yoneda, K., et al. Periderm cells form cornified cell envelope in their regression process during human epidermal development. J Invest Dermatol, 1999, 112(6), p. 903–909.
6. Aly, R., Maibach, HI., Rahman, R., et al. Correlation of human in vivo and in vitro cutaneous antimicrobial factors. J Infect Dis, 1975, 131(5), p. 579–583.
7. Ansari, MN., Nicolaides, N., Fu, HC. Fatty acid composition of the living layer and stratum corneum lipids of human sole skin epidermis. Lipids, 1970, 5(10), p. 838–845.
8. Baker, SM., Balo, NN., Abdel Aziz, FT. Is vernix caseosa a protective material to the newborn? A biochemical approach. Indian J Pediatr, 1995, 62(2), p. 237–239.
9. Brown, DL., Polger, M., Clark, PK., et al. Very echogenic amniotic fluid: ultrasonography-amniocentesis correlation. J Ultrasound Med, 1994, 13(2), p. 95–97.
10. Buchman, AL. Glutamine: is it a conditionally required nutrient for the human gastrointestinal system? J Am Coll Nutr, 1996, 15(3), p. 199–205.
11. Hardman, MJ., Moore, L., Ferguson, MW., et al. Barrier formation in the human fetus is patterned. J Invest Dermatol, 1999, 113(6), p. 1106–1113.
12. Hardman, MJ., Sisi, P., Banbury, DN., et al. Patterned acquisition of skin barrier function during development. Development, 1998, 125(8), p. 1541–1552.
13. Harriger, MD., Hull, BE. Cornification and basement membrane formation in a bilayered human skin equivalent maintained at an air-liquid interface. J Burn Care Rehabil, 1992, 13(2 Pt 1), p. 187–193.
14. Hashimoto, K., Gross, BG., DiBella, RJ., et al. The ultrastructure of the skin of human embryos. IV. The epidermis. J Invest Dermatol, 1966, 47(4), p. 317–335.
15. Haubrich, KA. Role of Vernix caseosa in the neonate: potential application in the adult population. AACN Clin Issues, 2003, 14(4), p. 457–464.
16. Hoath, SB., Pickens, WL., Visscher, MO. The biology of vernix caseosa. Int J Cosmet Sci, 2006, 28(5), p. 319–333.
17. Hoeger, PH., Schreiner, V., Klaassen, IA., et al. Epidermal barrier lipids in human vernix caseosa: corresponding ceramide pattern in vernix and fetal skin. Br J Dermatol, 2002, 146(2), p. 194–201.
18. Holbrook, KA., Odland, GF. Regional development of the human epidermis in the first trimester embryo and the second trimester fetus (ages related to the timing of amniocentesis and fetal biopsy). J Invest Dermatol, 1980, 74(3), p. 161–168.
19. Hu, MS., Borrelli, MR., Hong, WX., et al. Embryonic skin development and repair. Organogenesis, 2018, 14(1), p. 46–63.
20. Ito, N., Ito, T., Kromminga, A., et al. Human hair follicles display a functional equivalent of the hypothalamic-pituitary-adrenal axis and synthesize cortisol. FASEB J, 2005, 19(10), p. 1332–1334.
21. Jha, AK., Baliga, S., Kumar, HH., et al. is there a preventive role for vernix caseosa?: An in vitro study. J Clin Diagn Res, 2015, 9(11), p. SC13–16.
22. Kaerkkaeinen, J., Nikkari, T., Ruponen, S., et al. Lipids of vernix caseosa. J Invest Dermatol, 1965, 44, p. 333–338.
23. Karamustafaoglu Balci, B., Goynumer, G. Incidence of echogenic amniotic fluid at term pregnancy and its association with meconium. Arch Gynecol Obstet, 2018, 297(4), p. 915–918.
24. Kitzmiller, JL., Highby, S., Lucas, WE. Retarded growth of E. coli in amniotic fluid. Obstet Gynecol, 1973, 41(1), p. 38–42.
25. Leyden, JJ., Grove, GL. Vernix caseosa: a „natural biofilm“ in very low birthweight infants. Pediatr Dermatol, 2001, 18(4), p. 361–364.
26. Madison, KC., Swartzendruber, DC., Wertz, PW., et al. Presence of intact intercellular lipid lamellae in the upper layers of the stratum corneum. J Invest Dermatol, 1987, 88(6), p. 714–718.
27. Marchini, G., Lindow, S., Brismar, H., et al. The newborn infant is protected by an innate antimicrobial barrier: peptide antibiotics are present in the skin and vernix caseosa. Br J Dermatol, 2002, 147(6), p. 1127–1134.
28. Monteagudo, B., Labandeira, J., Leon-Muinos, E., et al. [Influence of neonatal and maternal factors on the prevalence of vernix caseosa]. Actas Dermosifiliogr, 2011, 102(9), p. 726–729.
29. Narendran, V., Wickett, RR., Pickens, WL., et al. Interaction between pulmonary surfactant and vernix: a potential mechanism for induction of amniotic fluid turbidity. Pediatr Res, 2000, 48(1), p. 120–124.
30. Nazzaro-Porro, M., Passi, S., Boniforti, L., et al. Effects of aging on fatty acids in skin surface lipids. J Invest Dermatol, 1979, 73(1), p. 112–117.
31. Nemes, Z., Steinert, PM. Bricks and mortar of the epidermal barrier. Exp Mol Med, 1999, 31(1), p. 5–19.
32. Nicolaides, N., Apon, JM. Further studies of the saturated methyl branched fatty acids of vernix caseosa lipid. Lipids, 1976, 11(11), p. 781–790.
33. Nishijima, K., Yoneda, M., Hirai, T., et al. Biology of the vernix caseosa: A review. J Obstet Gynaecol Res, 2019. 45, p. 2145–2149. doi: 10.1111/jog.14103.
34. Okah, FA., Wickett, RR., Pickens, WL., et al. Surface electrical capacitance as a noninvasive bedside measure of epidermal barrier maturation in the newborn infant. Pediatrics, 1995, 96(4 Pt 1), p. 688–692.
35. Okah, FA., Wickett, RR., Pompa, K., et al. Human newborn skin: the effect of isopropanol on skin surface hydrophobicity. Pediatr Res, 1994, 35(4 Pt 1), p. 443–446.
36. Parra, JL., Paye, M., Group, E. EEMCO guidance for the in vivo assessment of skin surface pH. Skin Pharmacol Appl Skin Physiol, 2003, 16(3), p. 188–202.
37. Pickens, WL., Warner, RR., Boissy, YL., et al. Characterization of vernix caseosa: water content, morphology, and elemental analysis. J Invest Dermatol, 2000, 115(5), p. 875–881.
38. Puhvel, SM., Reisner, RM., Amirian, DA. Quantification of bacteria in isolated pilosebaceous follicles in normal skin. J Invest Dermatol, 1975, 65(6), p. 525–531.
39. Ran-Ressler, RR., Khailova, L., Arganbright, KM., et al. Branched chain fatty acids reduce the incidence of necrotizing enterocolitis and alter gastrointestinal microbial ecology in a neonatal rat model. PLoS One, 2011, 6(12), p. e29032.
40. Rissmann, R., Groenink, HW., Weerheim, AM., et al. New insights into ultrastructure, lipid composition and organization of vernix caseosa. J Invest Dermatol, 2006, 126(8), p. 1823–1833.
41. Roos, TC., Geuer, S., Roos, S., et al. Recent advances in treatment strategies for atopic dermatitis. Drugs, 2004, 64(23), p. 2639–2666.
42. Saunders, C. The vernix caseosa and subnormal temperature in premature infants. J Obstet Gynaecol Br Emp, 1948, 55(4), p. 442–444.
43. Singh, G., Archana, G. Unraveling the mystery of vernix caseosa. Indian J Dermatol, 2008, 53(2), p. 54–60.
44. Stewart, ME., Quinn, MA., Downing, DT. Variability in the fatty acid composition of wax esters from vernix caseosa and its possible relation to sebaceous gland activity. J Invest Dermatol, 1982, 78(4), p. 291–295.
45. Supp, AP., Wickett, RR., Swope, VB., et al. Incubation of cultured skin substitutes in reduced humidity promotes cornification in vitro and stable engraftment in athymic mice. Wound Repair Regen, 1999, 7(4), p. 226–237.
46. Taieb, A. Skin barrier in the neonate. Pediatr Dermatol, 2018, 35, Suppl. 1, p. s5–s9.
47. Tansirikongkol, A., Hoath, SB., Pickens, WL., et al. Equilibrium water content in native vernix and its cellular component. J Pharm Sci, 2008, 97(2), p. 985–994.
48. Taylor, WC., James, JA., Henderson, JL. The significance of yellow vernix in the newborn. Arch Dis Child, 1952, 27(135), p. 442–444.
49. Thiele, JJ., Packer, L. Noninvasive measurement of alpha- -tocopherol gradients in human stratum corneum by high-performance liquid chromatography analysis of sequential tape strippings. Methods Enzymol, 1999, 300, p. 413–419.
50. Thiele, JJ., Weber, SU., Packer, L. Sebaceous gland secretion is a major physiologic route of vitamin E delivery to skin. J Invest Dermatol, 1999, 113(6), p. 1006–1010.
51. Tollin, M., Bergsson, G., Kai-Larsen, Y., et al. Vernix caseosa as a multi-component defence system based on polypeptides, lipids and their interactions. Cell Mol Life Sci, 2005, 62(19–20), p. 2390–2399.
52. Visscher, M., Narendran, V. The ontogeny of skin. Adv Wound Care (New Rochelle), 2014, 3(4), p. 291–303.
53. Visscher, MO., Adam, R., Brink, S., et al. Newborn infant skin: physiology, development, and care. Clin Dermatol, 2015, 33(3), p. 271–280.
54. Visscher, MO., Barai, N., LaRuffa, AA., et al. Epidermal barrier treatments based on vernix caseosa. Skin Pharmacol Physiol, 2011, 24(6), p. 322–329.
55. Visscher, MO., Narendran, V., Pickens, WL., et al. Vernix caseosa in neonatal adaptation. J Perinatol, 2005, 25(7), p. 440–446.
56. Wakai, RT., Lengle, JM., Leuthold, AC. Transmission of electric and magnetic foetal cardiac signals in a case of ectopia cordis: the dominant role of the vernix. caseosa. Phys Med Biol, 2000, 45(7), p. 1989–1995.
57. Wertz, PW., Miethke, MC., Long, SA., et al. The composition of the ceramides from human stratum corneum and from comedones. J Invest Dermatol, 1985, 84(5), p. 410–412.
58. Williams, ML., Hanley, K., Elias, PM., et al. Ontogeny of the epidermal permeability barrier. J Investig Dermatol Symp Proc, 1998, 3(2), p. 75–79.
59. Williams, ML., Hincenbergs, M., Holbrook, KA. Skin lipid content during early fetal development. J Invest Dermatol, 1988, 91(3), p. 263–268.
60. Wysocki, SJ., Grauaug, A., O‘Neill, G., et al. Lipids in forehead vernix from newborn infants. Biol Neonate, 1981, 39(5–6), p. 300–304.
61. Yan, Y., Wang, Z., Wang, D., et al. BCFA-enriched vernix- -monoacylglycerol reduces LPS-induced inflammatory markers in human enterocytes in vitro. Pediatr Res, 2018, 83(4), p. 874–879.
62. Yoshio, H., Lagercrantz, H., Gudmundsson, GH., et al. First line of defense in early human life. Semin Perinatol, 2004, 28(4), p. 304–311.
63. Youssef, W., Wickett, RR., Hoath, SB. Surface free energy characterization of vernix caseosa. Potential role in waterproofing the newborn infant. Skin Res Technol, 2001, 7(1), p. 10–17.
64. Zhukov, BN., Neverova, EI., Nikitin, KE., et al. [A comparative evaluation of the use of vernix caseosa and solcoseryl in treating patients with trophic ulcers of the lower extremities]. Vestn Khir Im I I Grek, 1992, 148(6), p. 339–341.
Labels
Paediatric gynaecology Gynaecology and obstetrics Reproduction medicineArticle was published in
Czech Gynaecology
2020 Issue 4
Most read in this issue
- Cesarean scar defect – manifestation, diagnostics, treatment
- What next in cervical cancer screening?
- Benefits of exercise in the prenatal and postnatal period
- Assisted reproductive methods – current status and perspectives