#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Introduction to 3D Planning in Orthognatic Surgery.
3D Simulation of Orthognatic Surgery Using Dolphin Imaging 3D® Software


Authors: M. Šrubař 1;  T. Dostálová 1;  P. Hofmanová 1;  R. Foltán 2;  H. Eliášová 1
Authors‘ workplace: Stomatologická klinika dětí a dospělých 2. LF UK a FN Motol, Praha 1;  Stomatologická klinika 1. LF UK a VFN, Praha 2;  Kriminalistický ústav, Praha 3
Published in: Česká stomatologie / Praktické zubní lékařství, ročník 115, 2015, 2, s. 36-45
Category: Review Article

Overview

AIM:
Recently there has been a great progress in three-dimensional (3D) technologies in field of medicine. Dentistry and maxillofacial surgery haven’t been exceptions. Methods such as model surgery or cephalometric methods of prediction (2D prediction) including video imaging are considered as “gold standards” in orthognathic surgery. However, these techniques, despite being routine part of the diagnosis and treatment planning process, have their limitations. 3D environment adds the third dimension to planning, which moves planning closer to reality and gives us more information for diagnosing a wider range of dentofacial anomalies. Furthermore, 3D planning increases accuracy of overall orthognatic planning by using modern 3D imaging methods, such as Cone Beam CT, stereophotogrammetry or digital models of dental arches. By merging these 3D images is created virtual model of patient head, described by some authors as triad. It depicts facial skeleton (Cone Beam CT), facial soft tissues (stereophotogrammetry scan) and dental arches (digital models) in the most suitable way. The next step is to perform 3D simulation on this virtual model by using a planning software, e.g. Dolphin imaging 3D®.

The aim of this article is to present relatively new method of orthognatic surgery planning and brings some information about 3D imaging technologies, which are essential as part of that process. Simultaneously fundamental steps (procedures) in orthognatic surgery 3D simulation using program Dolphin Imaging 3D® process are described.

Keywords:
orthognatic surgery, orthodontics – Cone-Beam Computed Tomography – facial scan – digital dental models/casts


Sources

1. Aboul-Hosn Centenero, S., Hernández-Alfaro, F.: 3D planning in orthognathic surgery: CAD/CAM surgical splints and prediction of the soft and hard tissues results – our experience in 16 cases. J. Craniomaxillofac. Surg., roč. 40, 2012, č. 2, s. 162–168.

2. Adolphs, N., Liu, W., Keeve, E., Hoffmeister, B.: RapidSplint: virtual splint generation for orthognathic surgery – results of a pilot series. Comput. Aided. Surg., roč. 19, 2014, č. 1–3, s. 20–28.

3. Akyalcin, S., Cozad, B. E., English, J. D., Colville, C. D., Laman, S.: Diagnostic accuracy of impression-free digital models. Am. J. Orthod. Dentofacial. Orthop., roč. 144, 2013, č. 6, s. 916–922.

4. Akyalcin, S., Dyer, D. J., English, J. D., Sar, C.: Comparison of 3-dimensional dental models from different sources: diagnostic accuracy and surface registration analysis. Am. J. Orthod. Dentofacial Orthop., roč. 144, Dec 2013, s. 831–837.

5. Ayoub, A. F., Xiao, Y., Khambay, B., Siebert, J. P., Hadley, D.: Towards building a photo-realistic virtual human face for craniomaxillofacial diagnosis and treatment planning Int. J. Oral Maxillofac. Surg., roč. 36, 2007, č. 5, s.423–428.

6. Flügge, T. V., Schlager, S., Nelson, K., Nahles, S., Metzger, M. C.: Precision of intraoral digital dental impressions with iTero and extraoral digitization with the iTero and a model scanner. Am. J. Orthod. Dentofacial Orthop., roč 144, 2013, č. 3, s. 471–478.

7. Grünheid, T., McCarthy, S. D., Larson, B. E.: Clinical use of a direct chairside oral scanner: an assessment of accuracy, time, and patient acceptance. Am. J. Orthod. Dentofacial Orthop., roč. 146, 2014, č. 5, s. 673–682.

8. Grybauskas, S., Balciuniene, I., Vetra, J.: Validity and reproducibility of cephalometric measurements obtained from digital photographs of analogue headfilms. Stomatologija, roč. 9, 2007 s. 114–120.

9. Hanzelka, T.: Cone Beam CT ve stomatologii: Pohybové artefakty a jejich redukce. Disertační práce, 2013.

10. Heike, C. L., Upson, K., Stuhaug, E., Weinberg, S. M.: 3D digital stereophotogrammetry: a practical guide to facial image acquisition. Head Face Med., roč. 28, 2010, č. 6, s. 18.

11. Hu, X. Y., Pan, X. G., Gao, W. L., Xiao, Y. M.: The reliability and accuracy of the digital models reconstructed by cone-beam computed tomography. Shanghai Kou Qiang Yi Xue., roč. 20, 2011, č. 5, s. 512–516.

12. Khambay, B., Nebel, J. C., Bowman, J., Walker, F., Hadley, D. M., Ayoub, A.: 3D stereophotogrammetic image superimposition into 3D CT scan images: the future of orthognatic surgery. Int. J. Adult Orthodon. Orthognath. Surg., roč. 17, 2002, č. 4, s. 331–341.

13. Lane, C., Harrell, W. Jr.: Completing the 3-dimensional picture. Am. J. Orthod. Dentofacial Orthop., roč. 133, 2008, č. 4, s. 612–620.

14. Ludlow, J. B., Davies-Ludlow, L. E., White, S. C.: Patient risk related to common dental radiographic examinations: the impact of 2007 International Commission on Radiological Protection recommendations regarding dose calculation. J. Am. Dent. Assoc., roč. 139, 2008, č. 9, s. 1237–1243.

15. Ludlow, J. B., Walker, C.: Assessment of phantom dosimetry and image quality of i-CAT FLX cone-beam computed tomography. Am. J. Orthod. Dentofacial Orthop., roč 144, 2013, č. 6, s. 802–817.

16. Nadjmi, N., Mollemans, W., Daelemans, A., Van Hemelen, G., Schutyser, F., Bergé, S.: Virtual occlusion in planning orthognatic surgical procedures. Int. J. Oral Maxillofac. Surg., roč. 39, 2010, č. 5, s. 457–462.

17. Nahm, K. Y., Kim, Y., Choi, Y. S,, Lee, J., Kim, S. H., Nelson, G.: Accurate registration of cone-beam computed tomography scans to 3-dimensional facial photographs Am. J. Orthod. Dentofacial Orthop., roč. 145, 2014, č. 2, s. 256–264.

18. Naudi, K. B., Benramadan, R., Brocklebank, L., Ju, X., Khambay, B., Ayoub, A.: The virtual human face: superimposing the simultaneously captured 3D photorealistic skin surface of the face on the untextured skin image of the CBCT scan. Int. J. Oral Maxillofac. Surg., roč. 42, 2013, č. 3, s. 393–400.

19. Nkenke, E., Zachow, S., Benz, M., Maier, T., Veit, K., Kramer, M., Benz, S., Häusler, G., Wilhelm- Neukam, F., Lell, M.: Fusion of computed tomography data and optical 3D images of the dentition for streak artefact correction in the simulation of orthognatic surgery Dentomaxillofacial Radiology, roč. 33, 2004, č. 4, s. 226–232.

20. Plooij, J. M., Maal, T. J., Haers, P., Borstlap, W. A., Kuijpers-Jagtman, A. M., Bergé, S. J.: Digital three-dimensional image fusion processes for planning and evaluating orthodontics and orthognathic surgery. A systematic review. Int. J. Oral Maxillofac. Surg., roč. 40, 2011, č. 4, s. 341–352.

21. www.radiologyinfo.org

22. Rangel, F. A, Maal, T. J. J., Bronkhorst, E. M., Breuning, K. H., Schols, J. G. J. H., Berge, S. J., Kuijpers-Jagtman, A. M.: Accuracy and Reliability of a Novel Method for Fusion of Digital Dental Casts and Cone Beam Computed Tomography Scans PLOS ONE – www.plosone.org 2013; 8 (3): e59130.

23. Sajfrtová, S., Tycová, H., Foltán, R.: Možnosti předpovědi a zobrazení léčebných změn. Ortodoncie, roč. 17, 2008, č. 1, s. 36–44.

24. SEDENTEXCT – http://www.sedentexct.eu/files/guidelines_final.pdf,2008

25. Sousa, M. V., Vasconcelos, E. C., Janson, G., Garib, D., Pinzan, A.: Accuracy and reproducibility of 3-dimensional digital model measurements. Am. J. Orthod. Dentofacial Orthop., roč. 142, 2012, č. 2, s. 269–273.

26. Tarazona, B., Llamas, J. M., Cibrian, R., Gandia, J. L., Paredes, V.: A comparison between dental measurements taken from CBCT models and those taken from a digital method. Eur. J. Orthod., roč 35, 2013, č. 1, s. 1–6.

27. Ullman, V.: Radiační ochrana – http://astronuklfyzika.cz/

Labels
Maxillofacial surgery Orthodontics Dental medicine
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#