Alveolar Bone Formation by Orthodontic Movement
Authors:
M. Šedivec; T. Dostálová; P. Hofmanová
Authors‘ workplace:
Dětská stomatologická klinika 2. LF UK a FN Motol, Praha
Published in:
Česká stomatologie / Praktické zubní lékařství, ročník 112, 2012, 2, s. 33-39
Category:
Review Article
Overview
Objectives:
The ability to move tooth trough alveolar bone is one of the basic principles in orthodontics. Mechanical force generated by orthodontic appliance is transferred to periodontal ligament resulting in the remodeling of alveolar bone. Tooth movement is enabled by apposition and resorption of bone tissue. Process of bone remodeling can be used in order to create new bone in certain clinical situations. Early loss or agenesis of tooth is followed by the atrophy of alveolar ridge. Bone formation and implant site development by tooth movement is an interesting alternative to surgical bone augmentation techniques. Number of studies prove that long term stability of bone created trough orthodontic movement is much better than in case of surgical augmentative procedures. Implant site development by orthodontic extrusion of nonrestorable tooth prior to implant placement is another option for improving alveolar bone and gingival characteristics. Periodontal one-wall osseous defects are treated most efficiently by orthodontic tooth movement.
Conclusion:
Methods of quantitative and qualitative analysis of alveolar crest formed during tooth movement had been very limited until recently. Available radiographic imagining techniques were not accurate enough to allow the precise assessment of changes in the level of remodelated alveolar bone. Technology of Cone Beam CT (CBCT) has revolutionized the bone analysis and high precision measurements during last decade.
In spite of all advantages being brought by CBCT some limitations and restrictions ought to be taken into account when analyzing CT scans.
Key words:
orthodontics – bone remodelling – Cone Beam CT
Sources
1. Ahlquist, J., Isberg, A. M.: Bone demarcation of the temporomandibular joint. Acta Radiol., roč. 39, 1998, s. 649–655.
2. Ballrick, J. W., Palomo, J. M., Ruch, E., Amberman, B. D., Hans, M. G.: Image distortion and spatial resolution of a commercially available cone-beam computed tomography machine. Am. J. Orthod. Dentofacial Orthop., roč. 134, 2008, s. 573–582.
3. Baumgaertel, S., Palomo, M. J., Palomo, L., Hans, M. G.: Reliability and accuracy of cone-beam computed tomography dental measurements. Am. J. Orthodont. Dentofacial Orthop., roč. 136, 2009, str. 19–25.
4. Binderman, I., Bahar, H., Yaffe: Strain relaxation of fibroblasts in the marginal periodontium is the common trigger for alveolar bone resorption: a novel hypothesis. J. of Periodontol., roč. 73, 2002, s. 1210–1215.
5. Biggs, J., Beagle, J. R.: Pre-implant orthodontics: achieving vertical bone height without osseous graft. J. Indiana Dent. Assoc., roč. 83, 2004, s. 18–19.
6. Buskin, R., Castellon, P., Hochstedler, J. L.: Orthodontic extrusion and orthodontic extraction in preprosthetic treatment using implant therapy. Pract. Periodontics Aesthet. Dent., roč. 12, 2000, s. 213–219.
7. Cattaneo, P. M., Dalstra, M., Melsen, B.: The finite element method: a tool to study orthodontic tooth movement. J. Dent. Res., roč. 84, 2005, s. 428–433.
8. Cheek, C. C., Paterson, R. L., Proffit, W. R.: Response of erupting human second premolars to blood flow changes. Arch Oral. Biol., roč. 47, 2002, s. 851–858.
9. Damstra, J., Zacharias, F., Huddleson, S. JR. J., Ren, Y.: Accuracy of linear measurements from cone-beam computed tomography-derived surface model of different voxel sizes. Am. J. Orthodont. Dentofacial Orthop., roč. 137, 2010, s. 1–16.
10. De Vos, W., Casselman, J., Swennen, G. R.: Cone-beam computerized (CBCT) imagining of the oral and maxillofacial region: a systematic review of the literature. Int. J. Oral. Maxillofac. Surg., roč. 38, 2009, s. 609–625.
11. Erkut, S., Arman, A., Gulsahi, A., Uckan, S., Gulsahi, K.: Forced eruption and implant treatment in posterior maxilla: a clinical report. J. Prosthet. Dent., roč. 97, 2007, s. 70–74.
12. Endo, M., Tsunoo, T., Nakamori, N., Yoshida, K.: Effect of scattered radiation on image noise in cone-beam CT. Med. Phys., roč. 28, 2001, s. 469–474.
13. Frost, H. M.: A 2003 update of bone physiology and Wolff’s law for clinicians. Angle Orthod., roč. 74, 2002, s. 3–15.
14. Gonzales, L. S., Olmedo, G. M. V., Vallecillo Capilla, M.: Esthetic restoration with orthodontic traction and single-tooth implant: case report. Int. J. Periodontics Restorative Dent., roč. 25, 2005, s. 239–245.
15. Gribel, F. B., Gribel, M. N., Frazao, D. C., McNamara, J. A. Jr., Manzi, R. F.: Accuracy and reliability of craniometrics measurements on lateral cephalometry and 3D measurements on CBCT scans. Angle Orthod., roč. 81, 2011, s. 26–35.
16. Hatcher, D. C.: Operational Principles for Cone-Beam Computed Tomography. J. Am. Dent. Assoc., roč. 141, 2010, příloha s. 3–6.
17. Henneman, S., Von den Hoff, J. W., Maltha, J. C.: Mechanobiology of tooth movement. Eur. J. Orthod., roč. 30, 2008, s. 299–306.
18. Hugo, A. O., Preston, C. B., Reis, P.: A simple reproducible technique for use of computed tomography in orthodontics. Eur. J. Orthod., roč. 3, 1981, s. 121–124.
19. Kimpe, T., Tuyschaever, T.: Increasing the number of gray shades in medical display systems-how much is enough? J. Digit. Imaging, roč. 20, 2007, s. 422–432.
20. Kokich, V. G.: Esthetics: The orthodontic-periodontic restorative connection. Semin. Orthod., roč. 2, 1996, s. 21–30.
21. Korayem, M., Carlos Flores, M., Nassar, U., Olfert, K.: Implant site development by orthodontic extrusion. A systematic review. Angle Orthod., roč. 4, 2008, s. 752–760.
22. Kwong, J. C., Palomo, J. M., Landers, M. A.: Image quality produced by different cone-beam computed tomography settings. Am. J. Orthod. Dentofacial. Orthop., roč. 133, 2008, s. 317–327.
23. Lindskog-Stokland, B., Wennstrom, J. L., Nyman, S., Thilander, B.: Orthodontic tooth movement into edentulous areas with reduced bone height. An experimental study in the dogs. Eur. J. Orthod., roč. 15, 1993, s. 89–96.
24. Leung, C. C., Palomo, L., Grifith, R., Hans, M. G.: Accuracy and reliability of computed tomography for measuring alveolar bone height and detecting bony dehiscences and fenestrations. Am. J. Orthod. Dentofacial. Orthop., roč. 137, 2010, příloha s. 109–119.
25. Lund, H., Grondahl, K., Grondahl, H. G.: Cone beam computed tomography for assessment of root length and marginal bone level during orthodontic treatment. Angle Orthod, roč. 80, 2010, s. 466–473.
26. Mah, J. K., Huang, J. C., Choo, H. R.: Practical Aplications of Cone Beam Computed Tomography in Orthodontics. J. Am. Dent., roč. 141, 2010, s. 7–13.
27. Marek I., Starosta M.: Posun zubu kostí atrofovaného alveolu – možnosti, limity a komplikace. Sborník abstrakt XI. Kongres ČOS, 30. 9.–2. 10. 2010, Brno.
28. Marks, S. C. Jr., Cahill, D. R.: Experimental study in the dog of the non-active role of the tooth in the eruptive process. Arch Oral Biol, roč. 29, 1984, s. 311–322.
29. Melsen, B.: Biological reaction of alveolar bone to orthodontic tooth movement. Angle Orthod., roč. 69, 1999, s. 151–158.
30. Melsen, B.: Tissue reaction to orthodontic tooth movement – a new paradigma. Eur. J. Orthod., roč. 23, 2001, s. 671–681.
31. Miracle, A. C., Mukherji, S. K.: Conebeam CT of the head and neck, part 1: physical principles. AJNR Am. J. Neuroradiol., roč. 30, 2009, s. 2088–2095.
32. Molen, A. D.: Considerations in the use of cone-beam computed tomography for buccal bone measurements. Am. J. Orthod. Dentofacial Orthop. roč. 137, 2010, příloha s. 130–135.
33. Moshiri, M., Scarfe, W. C., Hilgers, M. L., Scheetz, J. P., Silveira, A. M., Farman, A. G.: Accuracy of linear measurements from imaging plate and lateral cephalometric images derived from cone-beam computed tomography. Am. J. Orthod. Dentofacial Orhop., roč. 132, 2007, 550–560.
34. Murrel, E. F., Yen, E. H., Johnson, R. B.: Vascular changes in the periodontal ligament after removal of orthodontic forces. Am. J. Orthod. Dentofacial Orthop., roč. 110, 1996, s. 280–286.
35. Nemcovsky, C. E., Sasson, M., Beny, L., Weinreb, M., Vardimon, A. D.: Periodontal healing following orthodontic movement of rat molars with intact versus damaged periodontia towards a bony defekt. Eur. J. Orthod., roč. 29, 2007, s. 338–344.
36. Nováčková, S., Marek, I., Kamínek, M.: Orthodontic tooth movement: Bone formation and its stability over time. Am. J. Orthod. Dentofacial Orthop., roč. 139, 2009, s. 37–43.
37. Rody, W. J. Jr., King, G. J., Gu, G.: Osteoclast recruitment to sites of compression in orthodontic tooth movement. Am. J. Orthod. Dentofacial Orthop., roč. 120, 2001, s. 477–489.
38. Salama, H., Salama, M.: The role of orthodontic extrusive remodeling in the enhancement of soft and hard tissue profiles prior to implant placement : a systematic approach to the management of extraction site defect. Int. J. Periondontics Restorative Dent., roč. 13, 1993, s. 312–333.
39. Schutyser, F., van Cleynenbreugel, J.: From 3-D volumetric computer tomography to 3-D cephalometry. In: Swennen, G. R. J., Schutyser, F., Hausamen, J. E., editors. Three-dimensional cephalometry: a color atlas and manual. Heidleberg, Germany: Springer-Verlag; 2006, s. 2–11
40. Spear, F. M., Mathezus, D. M., Kokich, V. G.: Interdisciplinary management of single-tooth implants. Semin. Orthod., roč. 3, 1997, s. 45–72.
41. Uribe, F., Taylor, T., Shafer, D., Nanda, R.: A novel approach for implant site development through root tiping. Am. J. Orthod. Dentofacial Orthop., roč. 138, 2010, s. 649–655.
42. Wise, G. E., Yao, S., Henk, W.G.: Bone formation as a potential motive force of tooth eruption in the rat molar. Clin. Anat., roč. 20, 2007, s. 632–639.
43. Yamaguchi, M., et al.: Cathepsins B and L increased during response of periodontal ligament cells to mechanical stress in vitro. Connective Tissue Res, roč. 45, 2004, s. 181–189.
44. Zuccati, G., Bocchieri, A.: Implant site development by orthodontic extrusion of teeth with poor prognosis. J. Clin. Orthod., roč. 37, 2003, s. 307–311.
Labels
Maxillofacial surgery Orthodontics Dental medicineArticle was published in
Czech Dental Journal
2012 Issue 2
Most read in this issue
- Alveolar Bone Formation by Orthodontic Movement
- Oral Squamous Cell Carcinoma in the Annals of the Department of Dentistry in Hradec Králové
- The Effect of Surface Treatment on Composite Repair Bond Strength Longevity
- Effect of Macleaya Cordata (Willd )R.Br. Extract on Expression of Inflammatory Markers and Oxidative Stress in Gingival Fibroblasts