#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Membranes V - Epilogue of the Cycle


Authors: J. Mourek 1,2;  J. Pokorný 1;  D. Marešová 1;  I. Paclt 3
Authors‘ workplace: Fyziologický ústav 1. LF UK, Praha ;  přednosta prof. MUDr. O. Kittnar, CSc. Zdravotně-sociální fakulta Jihočeské univerzity, České Budějovice 1;  přednosta prof. MUDr. M. Velemínský, CSc. Psychiatrická klinika l. LF UK a VFN, Praha 2;  přednosta prof. MUDr. J. Raboch, DrSc. 3
Published in: Čes. a slov. Psychiat., 105, 2009, No. 6-8, pp. 269-274.
Category: Comprehensive Reports

Overview

Lipoid character of plasma membrane and its hydrophobic properties enable to form delimited spaces, representing the beginning of the intracellular space. Together with the development of organisms and their functions, molecules of fatty acids in the membrane become more and more complex. The rise of complexity is also apparent during ontogeny when the ratio of unsaturated fatty acids OMEGA-3 in plasma of newborns directly correlates with thier birth weight.

Plasma membrane is functionally specialized. It resides in variable expression of individual membrane components in spatially limited regions called domains. Specialized domains of nerve cells determine the function of dendrites, soma, axon, axon hillock act.

In childhood and adolescence a markedly higher plasticity of CNS, variability in oxygen consumption, the yield of aerobic and anaerobic ATP generation, the changeable numbers of ion channels and plasticity of glutamatergic synapses namely in the hippocampus, cerebellum and cerebral cortex can be related to changes in various psychic disorders. Mental diseases in childhood are characteristic by the difficulty to identify by biological methods, including genetic, biochemical and brain imaging techniques.

Structure and organization of plasma membrane domains determines the neuronal plasticity and determine both the optimal function and the potential for a pathogenetic development.

Key words:
lipid bilayer, fatty acids, plasma membrane domains, cell adhesion molecules, matrix-metalloproteinase, hyperkinetic disorder, aggressiveness, depressive disorder, infantile autism.


Sources

1. Bhutta, A. T., Cleves, M. A., Casey, P. H. et al.: Cognitive and behavioral outcomes of school-aged. Children who were born preterm: a meta-analysis. JAMA, 288(6), 2002, pp. 728-737.

2. Bowen, R. A., Claudinin, M. T.: Maternal dietary 22:6n-3 is more effective than 18:3n-3 in increasing the 22:6n-3 content in phospholipids of glial cells from neonatal brain. Brit. J. Nutr., 93, 2005, pp. 601-611.

3. Crawford, M. A., Harbrige, L. S.: N-3 fatty acids and the evolution of the brain. Proc. Clin. Biol. Res., 288, 1988, pp. 335-354.

4. Fitzpatrick, J. S., Hagenston, A. M., Hertle, D. N., Gipson, K. E., Bertetto-D’Angelo, L., Yeckel, M. F.: Inositol-1,4,5-trisphosphate receptor-mediated Ca2+ waves in pyramidal neuron dendrites propagate through hot spots and cold spots. Journal Physiol., 587, 2009, pp. 1439-1459.

5. Jaworski, D. M., Fager, N.: Regulation of tissue inhibitor of metalloproteinase-3 (Timp-3) mRNA expression during rat CNS development, Journal of Neuroscience Research, 61, 2000, 4, pp. 396-408.

6. Jourquin, J., Tremblay, E., Bernard, A., Charton, G., Chaillan, F. A., Marchetti, E., Roman, F. S., Soloway, P. D., Dive, V., Yiotakis, A., Khrestchatisky, M., Rivera, S.: Tissue inhibitor of metalloproteinases-1 (TIMP-1) modulates neuronal death, axonal plasticity, and learning and memory, Eur. J. Neurosci., 22, 2005, 10, pp. 2569-2578.

7. Kado, R. T.: The neuron as a mosaic of proteins, Journal of Physiology-Paris, 88, 1994, 2, pp. 99-104.

8. Kleczek, J.: Vesmír a člověk. Publ. Akademia, Praha, 1998, s. 201.

9. Koroly, M. J., Conner, R. L.: Unsaturated fatty acid Biosynthesis in TETRAHYMENA. J. Biol. Chem., 251, 1976, 23, pp. 7588-7592.

10. Lai, H. C., Jan, L. Y.: The distribution and targeting of neuronal voltage-gated ion channels. Nat.. Rev Neurosci., 7, 2006, pp. 548-562.

11. Lampert, K., Machein, U., Machein, M. R., Conca, W., Peter, H. H., Volk, B.: Expression of matrix metalloproteinases and their tissue inhibitors in human brain tumors. American Journal of Pathology, 153, 1998, 2, pp. 429-437.

12. Magee, J. C., Carruth, M.: Dendritic voltage-gated ion channels regulate the action potential firing mode of hippocampal CA1 pyramidal neurons. J. Neurophysiol, 82, 1999, pp. 1895-1901.

13. Miceli, C. D., Brenner, R. R.: Fatty acid biosynthesis during embryogenesis of the amphibian Buffo Arenarum Hansel. Lipids, 11, 1975, 4, pp. 291-295.

14. Michaluk, P., Kaczmarek, L.: Matrix metalloproteinase-9 in glutamate-dependent adult brain function and dysfunction, Cell Death and Differentiation, 14, 2007, pp. 1255–1258.

15. Mick, E., Faraone, S. V.: Genetics of attention deficit hyperactivity disorder, in attention deficit hyperactivity disorder Elsevier. Inc., 2008, pp. 261-284.

16. Moura, P. J., Lombroso, P. J., Mercadante, M. T.: Autism. In: Banaschewski T, Rohde L A.: Biological child psychiatry (Recent Trends and Developments). Karger, 2008, p. 256.

17. Mourek J., Pokorný J. , Langmeier M., Zvolský P. :Membrány IV. Specifické vlastnosti buněčné membrány ve vztahu k neuropsychickým poruchám. Česká a slov. Psychiat., 103, 2007, 8, s. 402-407.

18. Mourek, J. a kol. : OMEGA-3 mastné kyseliny. vývoj a zdraví. Publ. Triton, Praha, 2007, s. 178.

19. Mourek, J., Dohnalová, A.: Relationship between birth weight of newborns and unsaturated fatty acids (n-3) proportion in their blood serum. Physiol. Res., 45, 1996, pp. 165-168.

20. Mourek, J., Langmeier, M., Pokorný, J.: Membrány II. Membrána nervové buňky ve vývoji, při stresu, při změnách výživy a v průběhu neuroplastických změn. Česká a slov. Psychiat., 102, 2006, 1, s. 3l-35.

21. Mourek, J., Langmeier, M., Pokorný, J.: Membrány III. Význam stavu membrány nervové buňky pro specifiku jejich funkcí. Česká a slov. Psychiat., 102, 2006, 8, s. 155-159.

22. Mourek, J., Pokorný, J.: Membrány I. Struktura a funkce membrány nervových buněk. Česká a slov. Psychiat., 101, 2005, 3, s. 155-159.

23. Paclt, I.: Membrány a biologické nálezy u dětí s psychickými poruchami: přednáška Psychofarmakologické konference Jeseník, 2009

24. Ramakrishan, U., Imhoff-Kunsch B., DiGirolamo, A. M.: Role of docosahexaenoic acid in maternal and child mental health. Am. J. Clin. Nutr., 89, 2009, 3, pp. 958S-962S.

25. Riediger, N. D., Otoman, R. A., Suh, M., Moghadadian, M. H.: A systematic review of the role sof n-3 fatty acids in health and disease. J. Amer. Diet. Assoc., 109, 2009, 1, pp. 668-669.

26. Rosenberg, G. A.: Matrix metalloproteinases in brain injury, J. Neurotrauma, 12, 1995, 5, pp. 833-842.

27. Simopoulos, A.: Omega-3 fatty acids in inflammation and autoimmune diseases. J. Amer. Coll. Nutr., 21, 2002, pp 495-505.

28. Slotkin, T. A., Mac Killop, A., Rudder, C. L. et al.: Permanent, sex-selective effects of prenatal or adolescent nicotine exposure, separately or sequentially, in rat brain regions: indices of cholinergic and serotoninergic synaptic function, cell signaling, and neurall cell number and size at 6 months of age. Neuropsychopharmacology, 32, 2007, pp.1082-1097.

29. Tilney, F., Rosett, J.: The value of brain lipids as a index of brain deve1opment. Bull. Neurol. Inst. N. Y., 1, 1931, pp. 48

30. Yong, V. W., Krekoski, C. A., Forsyth, P. A., Bell, R., Edwards, D. R.: Matrix metalloproteinases and diseases of the CNS, Trends Neurosci,. 21,1998, 2, pp. 75-80.

Labels
Addictology Paediatric psychiatry Psychiatry
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#