Therapeutic monitoring of antipsychotics with a focus on lurasidone and its dosing
Authors:
Z. Strašilová 1; M. Turjap 2; J. Juřica 3
Authors‘ workplace:
Farmakologický ústav LF MU, Brno Ústav laboratorní medicíny – Oddělení klinické biochemie FN, Brno
1; Ústavní lékárna, FN Ostrava
2; Ústav farmakologie a toxikologie FaF MU, Brno Ústavní lékárna, Masarykův onkologický ústav, Brno Kamenice 5, 625 00 Brno
3
Published in:
Čes. slov. Farm., 2023; 72, 203-213
Category:
Review Articles
doi:
https://doi.org/10.5817/CSF2023-5-203
Overview
Dose-response relationships are not fully understood for antipsychotics. Especially in the case of multimodal antipsychotics, these relationships cannot be simplified to the level of dopaminergic receptor occupancy alone. In general, for most antipsychotics, there is no linear dose-response relationship. Reasons for this include, among others, pharmacokinetic factors affecting plasma levels. Based on meta-analyses, the doseresponse curve appears to be bell-shaped. However, in the case of some antipsychotics, it appears that even increasing the dose beyond the recommended range could yield further increases in efficacy. It should be stressed that this is an off-label procedure and cannot generally be recommended and there is not enough valid information for general conclusions for these antipsychotics either. Mini-invasive sampling and alternative matrices such as saliva or dry blood spots could open the way to more frequent monitoring of antipsychotics and a better understanding of doseresponse relationships.
Keywords:
Safety – Therapeutic drug monitoring – efficacy – lurasidone – dose- response relationship
Sources
- Tašková I. Lurasidon – rozšíření možností léčby schizofrenie s důrazem na kognitivní funkce a kardiometabolické cíle. Remedia 2020; 30(4), 454–459. Dostupné na: https://www.remedia.cz/rubriky/prehledy-nazory-di- skuse/lurasidon-rozsireni-moznosti-lecby-schizofre nie-s-durazem-na-kognitivni-funkce-a-kardiometabolicke-cile-11506/
- Hiemke C., Bergemann N., Clement H. W., Conca A., Deckert J., Domschke K., Eckermann G., Egberts K., Gerlach M., Greiner C., Gründer G., Haen E., Havemann-Reinecke U., Hefner G., Helmer R., Janssen G., Jaquenoud E., Laux G., Messer T., Mössner R., Müller M. J., Paulzen M., Pfuhlmann B., Riederer P., Saria A., Schoppek B., Schoretsanitis G., Schwarz M., Gracia M. S., Stegmann B., Steimer W., Stingl J. C., Uhr M., Ulrich S., Unterecker S., Waschgler R., Zernig G., Zurek G., Baumann P. Consensus Guidelines for Therapeutic Drug Monitoring in Neuropsychopharmacology: Update 2017. Pharmacopsychiatry 2018; 51(1–02), 9–62. Available from: https://www.thieme-connect.com/products/ ejournals/abstract/10.1055/s-0043-116492
- Brozmanová H. Laboratorní metody v terapeutickém monitorování léků. Klin. Farmakol. Farm. 2020; 34(2), 56–62. Dostupné na: https://www.klinickafarmakologie. cz/pdfs/far/2020/02/03.pdf
- Šilhán P., Kacířová I., Hýža M., Uřinovská R., Češková E., Grundmann M. Terapeutické monitorování hladin léčiv v psychiatrii – možnosti a využití v praxi. Psychiatr. praxi 2016; 17(1), 10–14. Dostupné na: https://www. solen.cz/artkey/psy-201601-0003_terapeuticke_monitorovani_hladin_leciv_v_psychiatrii_-_moznosti_a_ vyuziti_v_praxi.php?back=%2Fsearch.php%3Fquery%3Dfarmakoterapie%252520v%252520t%2525C4%26sfrom%3D210%26spage%3D30
- Potkin S. G., Keator D. B., Kesler-West M. L., Nguyen D. D., van Erp T. G., Mukherjee J., Shah N., Preda D2 receptor occupancy following lurasidone treatment in patients with schizophrenia or schizoaffective disorder. CNS Spectr. 2014; 19(2), 176–181. Available from: https://www.cambridge.org/core/journals/ cns-spectrums/article/abs/d2-receptor-occupancy-following-lurasidone-treatment-in-patients-with-schizophrenia-or-schizoaffectivedisorder/D336FB84B34785122C531E2710EE0586
- Hiemke C., Dragicevic A., Gründer G., Hätter S., Sachse J., Vernaleken I., Müller M. J. Therapeutic monitoring of new antipsychotic drugs. Ther. Drug. Monit. 2004; 26(2), 156–160. Available from: https://journals.lww.com/ drug-monitoring/abstract/2004/04000/therapeutic_ monitoring_of_new_antipsychotic_drugs.12.aspx
- Wong D. F., Kuwabara H., Brašić J. R., Stock T., Maini A., Gean E. G., Loebel A. Determination of dopamine D₂ receptor occupancy by lurasidone using positron emission tomography in healthy male subjects. Psychopharmacology 2013; 229(2), 245–252. Available from: https:// doi.org/10.1007/s00213-013-3103-z
- Kang J. S., Lee M. H. Overview of therapeutic drug monitoring. Korean J. Intern. Med. 2009; 24(1), 1–10. Available from: https://doi.org/10.3904/kjim.2009.24.1.1
- Jing J., Shan Y., Liu Z., Yan H., Xiang P., Chen P., Xu X. Automated online dried blood spot sample preparation and detection of anabolic steroid esters for sports drug testing. Drug. Test. Anal. 2022; 14(6), 1040–1052. Available from: https://doi.org/10.1002/dta.3226
- Deprez S., Stove Ch. Application of a Fully Automated Dried Blood Spot Method for Therapeutic Drug Monitoring of Immunosuppressants: Another Step Toward Implementation of Dried Blood Spot Analysis. Arch. Pathol. Lab. Med. 2022. Available from: https://doi.org/10.5858/ arpa.2021-0533-OA
- Gaugler S., Rykl J., Grill M., Cebolla V. L. Fully automated drug screening of dried blood spots using online LCMS/MS analysis. J. Appl. Bioanal. 2018; 4(1), 7–15. Available from: https://doi.org/10.17145/jab.18.003
- Luginbühl M., Gaugler S. The application of fully automated dried blood spot analysis for liquid chromatography-tandem mass spectrometry using the CAMAG DBS-MS 500 autosampler. Clin. Biochem. 2020; 82, 33–39. Available from: https://doi.org/10.1016/j.clinbiochem.2020.02.007
- Martial L. C., Aarnoutse R. E., Mulder M., Schellekens A., Brüggemann R. J. M., Burger D. M., Schene
- H., Batalla A. Dried Blood Spot sampling in psychiatry: Perspectives for improving therapeutic drug monitoring. Eur. Neuropsychopharmacol. 2017; 27(3), 205–216. Available from: https://doi.org/10.1016/j.euroneuro.2017.01.009
- Patteet L., Maudens K. E., Stove C. P., Lambert W. E., Morrens M., Sabbe, B., Neels, H. The use of dried blood spots for quantification of 15 antipsychotics and 7 metabolites with ultra-high performance liquid chromatography – tandem mass spectrometry. Drug. Test. Anal. 2015; 7(6), 502–511. Available from: https://doi. org/10.1002/dta.1698
- Niemiec A. Dried Blood Spot in Toxicology: Current Knowledge. Separations. 2021; 8(9), 145. Available from: https://doi.org/10.3390/separations8090145
- Antunes M. V., Charão M. F., Linden R. Dried blood spots analysis with mass spectrometry: Potentials and pitfalls in therapeutic drug monitoring, Clinical Biochemistry. 2016; 49(13–14), 1035–1046. Available from: https://doi.org/10.1016/j.clinbiochem.2016.05.004
- Ruggiero C., Ramirez S., Ramazzotti E., Mancini R., Muratori R., Raggi M. A., Conti M. Multiplexed therapeutic drug monitoring of antipsychotics in dried plasma spots by LCMS/MS. J. Sep. Sci. 2020; 43(8), 1440– 1449. doi: 10.1002/jssc.201901200
- Malsagova K., Kopylov A., Stepanov A., Butkova T., Izotov A., Kaysheva A. Dried Blood Spot in Laboratory: Directions and Prospects. Diagnostics (Basel). 2020; 10(4), 248. Available from: https://doi.org/10.3390/diagnostics10040248
- Fischer S., Obrist R., Ehlert U. How and when to use dried blood spots in psychoneuroendocrinological research. Psychoneuroendocrinology. 2019; 108, 190–196. Available from: https://doi.org/10.1016/j.psyneuen.2019.06.011
- The United States Food and Drug Administration. Pediatric Postmarketing Pharmacovigilance. Latuda 2019. Dostupné na: https://www.fda.gov/media/130835/ download
- European Medicines Agency. Souhrn údajů o přípravku. 2022. Dostupné na: https://www.ema.europa.eu/en/documents/product-information/latuda-epar-product-information_cs.pdf
- Státní ústav pro kontrolu léčiv. Latuda 74MG TBL FLM 28X1. Dostupné na: https://prehledy.sukl.cz/prehled_leciv.html#/leciva/0194921 (24. 06. 2023).
- The United States Food and Drug Administration. Latuda (lurasidone hydrochloride) Tablets. Pharmacology reviews 2010. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2010/200603Orig1s000ClinPharmR.pdf
- The United States Food and Drug Administration. Highlights of Prescribing Information. Latuda 2022. Available from: https://www.latuda.com/LatudaPre- scribingInformation.pdf
- Suppes T., Silva R., Cucchiaro J., Mao Y., Targum S., Streicher C., Pikalov A., Loebel A. Lurasidone for the Treatment of Major Depressive Disorder With Mixed Features: A Randomized, Double-Blind, Placebo-Controlled Study. Am. J. Psychiatry. 2016; 173(4), 400–407. Available from: https://doi.org/10.1176/appi.ajp.2015.15060770
- Pochiero I., Calisti F., Comandini A., Del Vecchio A., Costamagna I., Rosignoli M. T., Cattaneo A., Nunna S., Peduto I., Heiman F., Chang H. C., Chen C. C., Correll C. Impact of Lurasidone and Other Antipsychotics on Body Weight: Real-World, Retrospective, Comparative Study of 15,323 Adults with Schizophrenia. Int. J. Gen. Med. 2021; 14, 4081–4094. Available from: https://doi.org/10.2147/ IJGM.S320611
- Meyer J. M., Ng-Mak D. S., Chuang C. C., Rajagopalan K., Loebel A. Weight changes before and after lurasidone treatment: a real-world analysis using electronic health records. Ann. Gen. Psychiatry 2017; 16, 36. Available from: https://doi.org/10.1186/s12991-017-0159-x
- Caccia S., Pasina L., Nobili A. Critical appraisal of lurasidone in the management of schizophrenia. Neuropsychiatr. Dis. Treat. 2012; 8, 155–168. Available from: https://doi.org/10.2147/NDT.S18059
- Stahl S. M., Cucchiaro J., Simonelli, D., Hsu, J., Pikalov A., Loebel A. Effectiveness of lurasidone for patients with schizophrenia following 6 weeks of acute treatment with lurasidone, olanzapine, or placebo: a 6-month, open-label, extension study. J. Clin. Psychiatry 2013; 74(5), 507–515. Available from: https://www.psychiatrist. com/jcp/schizophrenia/effectiveness-lurasidone-patients-schizophrenia-following/
- Meltzer H. Y., Cucchiaro J., Silva R., Ogasa M., Phillips D., Xu J., Kalali A. H., Schweizer E., Pikalov A., Loebel A. Lurasidone in the treatment of schizophrenia: a randomized, double-blind, placeboand olanzapine-controlled study. Am. J. Psychiatry 2011; 168(9), 957–967. Available from: https://doi.org/10.1176/appi. ajp.2011.10060907
- Pompili M., Verzura C., Trovini G., Buscajoni A., Falcone G., Naim S., Nardella A., Sorice S., Baldessarini R. J., Girardi P. Lurasidone: efficacy and safety in the treatment of psychotic and mood disorders. Expert Opin. Drug. Saf. 2018; 17(2), 197–205. Available from: https:// doi.org/10.1080/14740338.2017.1379989
- European Medicines Agency. Assessment report – Latuda. 2014. Available from: https://www.ema.europa. eu/en/documents/assessment-report/latuda-epar-public-assessment-report_en.pdf
- Preskorn S., Ereshefsky L., Chiu Y. Y., Poola N., Loebel Effect of food on the pharmacokinetics of lurasidone: results of two randomized, open-label, crossover studies. Hum. Psychopharmacol. 2013; 28(5), 495–505. Available from: https://doi.org/10.1002/hup.2338
- Greenberg W. M., Citrome L. Pharmacokinetics and Pharmacodynamics of Lurasidone Hydrochloride, a Second-Generation Antipsychotic: A Systematic Review of the Published Literature. Clin. Pharmacokinet. 2017; 56(5), 493–503. Available from: https://doi.org/10.1007/ s40262-016-0465-5
- Citrome L. Lurasidone for schizophrenia: a brief review of a new second-generation antipsychotic. Clin. Schizophr. Relat. Psychoses. 2011; 4(4), 251–257. Available from: https://pubmed.ncbi.nlm.nih.gov/21177242/
- Katteboina M. Y., Pilli N. R., Mullangi R., Seelam R. R., Satla S. R. LC-MS/MS assay for the determination of lurasidone and its active metabolite, ID-14283 in human plasma and its application to a clinical pharmacokinetic study. Biomed. Chromatogr. 2016; 30(7), 1065–1074. Available from: https://doi.org/10.1002/bmc.3651
- Kumar Talluri M. V. N, Dharavath S., Kalariya P. D., Prasanth B., Srinivas R. Structural characterization of alkaline and oxidative stressed degradation products of lurasidone using LC/ESI/QTOF/MS/MS. J. Pharm. Biomed. Anal. 2015; 105, 1–9. Available from: https://doi. org/10.1016/j.jpba.2014.11.035
- Patteet L., Maudens K. E., Sabbe B., Morrens M., De Doncker M., Neels H. High throughput identification and quantification of 16 antipsychotics and 8 major metabolites in serum using ultra-high performance liquid chromatography-tandem mass spectrometry. Clin. Chim. Acta 2014; 429, 51–58. Available from: https://doi. org/10.1016/j.cca.2013.11.024
- Ravisankar P., Rajyalakshmi G., Deva Dasu Ch., Srinivasa Babu P., Venkateswar Reddy P. Novel analytical method development and validation for the quantitative analysis of lurasidone hydrochloride in bulk and pharmaceuical dosage forms by RP-HPLC. World Journal of Pharmaceutical Research 2014; 3(7), 453–466. Available from: https://www.academia.edu/33538456/ NOVEL_ANALYTICAL_METHOD_DEVELOPMENT_AND_ VALIDATION_FOR_THE_QUANTITATIVE_ANALYSIS_OF_ LURASIDONE_HYDROCHLORIDE_IN_BULK_AND_PHARMACEUTICAL_DOSAGE_FORMS_BY_RP_HPLC
- Sangeetha R. K. Method development and validation for the estimation of lurasidone by RP-HPLC and HPTLC. European Journal of Pharmaceutical and medical research. 2020; 2(5), 529-540. Available from: https://www. academia.edu/33538456/NOVEL_ANALYTICAL_METHOD_DEVELOPMENT_AND_VALIDATION_FOR_THE_ QUANTITATIVE_ANALYSIS_OF_LURASIDONE_HYDROCHLORIDE_IN_BULK_AND_PHARMACEUTICAL_DOSAGE_FORMS_BY_RP_HPLC
- Atila Karaca S., Yeniceli Uğur D. Development of a validated high-performance liquid chromatographic method for the determination of Lurasidone in pharmaceuticals. Marmara Pharm. J. 2017; 21(4), 931–937. Available from: http://dx.doi.org/10.12991/mpj.2017.32
- Thota B., Adepu G. S., Galla R. Method development, validation and stability studies for the determination of lurasidone hydrochloride in bulk and tablet dosage form RP-HPLC. International Journal of Pharmacy and Pharmaceutical Sciences 2018; 10(12), 58–63. Available from: https://doi.org/10.22159/ijpps.2018v10i12.27895
- Polawar, A. R., Damle, M. C. Development and validation of RP-HPLC method for estimation of lurasidone hydrochloride in bulk and pharmaceutical dosage form. IJRPC 2014; 4(2), 327–332. Available from: http://www. ijrpc.com/files/14-457.pdf
- Vaja M. D., Patel R. R., Patel B. D., Chaudhary A. B. Development and Validation of RP-HPLC Method for Estimation of Lurasidone and its impurities Lurasidone 1 and Lurasidone 8. Research Journal of Pharmacy and Technology 2022; 15(11), 4999–5004. Available from: https://rjptonline.org/AbstractView.aspx?PID=2022-15-11-25
- Enders J. R., Strickland E. C., McIntire G. L. Determination of the Relative Prevalence of Lurasidone Metabolites in Urine Using Untargeted HRMS. Spectroscopy 2019; 17(2), 8–15. Available from: https://www.chromatographyonline.com/view/determination-relative-prevalence-lurasidone-metabolites-urine-using-untargeted-hrms
- Feng S., Enders J. R., Cummings O. T., Strickland E. C., McIntire T., McIntire G. A Dilute and Shoot LC-MS/MS Method for Antipsychotics in Urine. J. Anal. Toxicol. 2020; 44(4), 331–338. Available from: https://doi.org/10.1093/ jat/bkz098
- Prokeš M., Suchopár J. Lékové interakce v psychiatrii teorie a praxe. Psychiatr. praxi 2015; 16(2), 51–55. Dostupné na: https://www.psychiatriepropraxi.cz/pdfs/ psy/2015/02/04.pdf
- Lucas C., Martin J. Smoking and drug interactions. Aust. Prescr. 2013; 36, 102–104. doi: 10.18773/austprescr.2013.037
- Loebel A., Cucchiaro J., Sarma K., Xu L., Hsu C., Kalali A. H., Pikalov A., Potkin S. G. Efficacy and safety of lurasidone 80 mg/day and 160 mg/day in the treatment of schizophrenia: a randomized, double-blind, placeboand active-controlled trial. Schizophr Res. 2013; 145, 101–109. Available from: https://doi.org/10.1016/j. schres.2013.01.009
- Shin Y. S., Kim S. N., Shin N. Y., Jung W. H., Hur J. W., Byun M. S., Jang J. H., An S. K., Kwon J. S. Increased intra-individual variability of cognitive processing in subjects at risk mental state and schizophrenia patients. PLOS One 2013; 8(11), e78354. Available from: https:// doi.org/10.1371/journal.pone.0078354
- Leucht S., Crippa A., Siafis S., Patel M. X., Orsini N., Davis J. M. Dose-Response Meta-Analysis of Antipsychotic Drugs for Acute Schizophrenia. Am. J. Psychiatry 2020; 177(4), 342–353. Available from: https://doi. org/10.1176/appi.ajp.2019.19010034
- Taylor D. M., Barnes T. R. E., Young, A. H. Schizophrenia and Related Psychoses. The Maudsley Prescribing Guidelines in Psychiatry 2021. Available from: https:// doi.org/10.1002/9781119870203.mpg001
- Billington S., Salphati L., Hop C. E. C. A., Chu X., Evers R., Burdette D., Rowbottom C., Lai Y., Xiao G., Humphreys W. G., Nguyen T. B., Prasad B., Unadkat J. D. Interindividual and Regional Variability in Drug Transporter Abundance at the Human Blood–Brain Barrier Measured by Quantitative Targeted Proteomics. Clin. Pharmacol. Ther. 2019; 106, 228–237. Available from: https://doi.org/10.1002/cpt.1373
- Leucht S., Leucht C., Huhn M., Chaimani A., Mavridis D., Helfer B., Samara M., Rabaioli M., Bächer S., Cipriani A., Geddes J. R., Salanti G., Davis J. M. Sixty Years of Placebo-Controlled Antipsychotic Drug Trials in Acute Schizophrenia: Systematic Review, Bayesian Meta-Analysis, and Meta-Regression of Efficacy Predictors. Am. J. Psychiatry 2017; 174(10), 927–942. Available from: https://doi.org/10.1176/appi.ajp.2017.16121358
- de Hert M., Detraux J., van Winkel R., Yu W., Correll C. U. Metabolic and cardiovascular adverse effects associated with antipsychotic drugs. Nat. Rev. Endocrinol. 2011; 8(2), 114–126. Available from: https://doi.org/10.1038/ nrendo.2011.156
- Sabe M., Zhao N., Crippa A., Kaiser S. Antipsychotics for negative and positive symptoms of schizophrenia: dose-response meta-analysis of randomized controlled acute phase trials. NPJ Schizophr. 2021; 7(1), 43. Available from: https://doi.org/10.1038/s41537-02100171-2
Labels
Pharmacy Clinical pharmacologyArticle was published in
Czech and Slovak Pharmacy
2023 Issue 5
Most read in this issue
- Two Lactobacilli strains as adjuvant therapy in the management of irritable bowel syndrome: a randomized control trial
- Hyperferritinemia as a factor associated with poor prognosis in COVID-19 patients
- Therapeutic monitoring of antipsychotics with a focus on lurasidone and its dosing
- Preparation and evaluation of spray-dried inhalable microparticles from carrier mixtures