Selected polyphenolic compounds and their use as a supportive therapy in metabolic syndrome
Authors:
Jan Soukop; Rostislav Večeřa
Published in:
Čes. slov. Farm., 2022; 71, 135-139
Category:
Review Articles
doi:
https://doi.org/https://doi.org/10.5817/CSF2022-4-135
Overview
Metabolic syndrome is diagnosed mainly in people of economically developed parts of the world and it affects 20–25% of the adult population worldwide. Nowadays, it is also more frequently diagnosed in children and adolescents. In addition to standard treatment that often involves polypharmacotherapy, and thus increases risk of side effects caused by drugdrug interactions, it is appropriate to look for alternative tools to support the treatment of metabolic syndrome components. Natural polyphenolic compounds, usually present in the so-called functional foods, are suitable candidates for that matter, due to the bioactivity and beneficial effects on the human body. Quercetin, troxerutin, diosmin, hesperidin or silybin are among the currently studied and used natural polyphenolic compounds with a positive effect on aspects of the metabolic syndrome. In addition to their antioxidant and anti-inflammatory effects, these compounds have other positive properties that very often outweigh their side effects whilst their usage in the pharmacotherapy.
Keywords:
diosmin – metabolic syndrome – quercetin – polyphenolic compounds – troxerutin – silymarin
Sources
1. Zhang S., Xu M., Zhang W., Liu C., Chen S. Natural Polyphenols in Metabolic Syndrome: Protective Mechanisms and Clinical Applications. Int. J. Mol. Sci. 2021; 22, 6110.
2. van den Brink W., van Bilsen J., Salic K., Hoevenaars F. P. M., Verschuren L., Kleemann R., Bouwman J., Ronnett G. V., van Ommen B., Wopereis S. Current and Future Nutritional Strategies to Modulate Inflammatory Dynamics in Metabolic Disorders. Front. Nutr. 2019; 6, 129.
3. Lillich F. F., Imig J. D., Proschak E. Multi-Target Approaches in Metabolic Syndrome. Front. Pharmacol. 2021; 11, 1996.
4. Saif-Ali R., Kamaruddin N. A., Al-Habori M., Al-Dubai S. A., Wan Ngah W. Z. Relationship of metabolic syndrome defined by IDF or revised NCEP ATP III with glycemic control among Malaysians with Type 2 Diabetes. Diabetol Metab Syndr. 2020; 12, 1–7.
5. Cardiovascular diseases (CVDs). https://www.who.int/ newsroom/factsheets/detail/cardiovascular-diseases-(- cvds) (17. 1. 2022).
6. Nasri H., Baradaran A., Shirzad H., Rafieian-Kopaei M. New Concepts in Nutraceuticals as Alternative for Pharmaceuticals. Int. J. Prev. Med. 2014; 5, 1487.
7. Ohta T., Masutomi N., Tsutsui N., Sakairi T., Mitchell M., Milburn M. V., Ryals J. A., Beebe K. D., Guo L. Untargeted metabolomic profiling as an evaluative tool of fenofibrate-Induced toxicology in fischer 344 male rats. Toxicol. Pathol. 2009; 37, 521–535.
8. David A. V. A., Arulmoli R., Parasuraman S. Overviews of biological importance of quercetin: A bioactive flavonoid. Pharmacogn Rev. 2016; 10, 84–89.
9. Quercetin | C15H10O7 – PubChem. https://pubchem. ncbi.nlm.nih.gov/compound/Quercetin (17. 1. 2022).
10. Hollman P. C., de Vries J. H., van Leeuwen S. D., Mengelers M. J., Katan M. B. Absorption of dietary quercetin glycosides and quercetin in healthy ileostomy volunteers. Am. J. Clin. Nutr.1995; 62, 1276–1282.
11. Boots A. W., Haenen G. R. M. M., Bast A. Health effects of quercetin: From antioxidant to nutraceutical. Eur. J. Pharmacol. 2008; 585, 325–337.
12. Murota K., Hotta A., Ido H., Kawai Y., Moon J. H., Sekido K., Hayashi H., Inakuma T., Terao J. Antioxidant capacity of albumin-bound quercetin metabolites after onion consumption in humans. J. Med. Invest. 2007; 54, 370–374.
13. Lakhanpal P., Rai D. K. Quercetin: A Versatile Flavonoid. IJMU 2007; 2, 20–35.
14. Xiao X., Shi D., Liu L., Wang J., Xie X., Kang T., Deng W. Quercetin Suppresses Cyclooxygenase-2 Expression and Angiogenesis through Inactivation of P300 Signaling. PLoS One. 2011; 6, e22934.
15. Askari G., Ghiasvand R., Feizi A., Ghanadian S. M., Karimian J. The effect of quercetin supplementation on selected markers of inflammation and oxidative stress. J Res Med Sci., 2012; 17, 637–641.
16. Ahmad N. S., Farman M., Najmi M. H., Mian K. B., Hasan A. Pharmacological basis for use of Pistacia integerrima leaves in hyperuricemia and gout. J. Ethnopharmacol. Elsevier 2008; 117, 478–482.
17. Ahmadi Z., Mohammadinejad R., Roomiani S., Afshar E. G., Ashrafizadeh M. Biological and Therapeutic Effects of Troxerutin: Molecular Signaling Pathways Come into View. J. Pharmacopunct. 2021; 24, 1–13.
18. Badalzadeh R., Layeghzadeh N., Alihemmati A., Mohammadi M. Beneficial effect of troxerutin on diabetes- induced vascular damages in rat aorta: histopathological alterations and antioxidation mechanism. Int. J. Endocrinol. Metab. 2015; 13.
19. Sampath S., Karundevi B. Effect of troxerutin on insulin signaling molecules in the gastrocnemius muscle of high fat and sucrose-induced type-2 diabetic adult male rat. Mol. Cell. Biochem. 2014; 395, 11–27.
20. Geetha R., Yogalakshmi B., Sreeja S., Bhavani K., Anuradha C. V. Troxerutin suppresses lipid abnormalities in the heart of high-fat-high-fructose diet-fed mice. Mol. Cell. Biochem. 2014; 387, 123–134.
21. Malinska H., Hüttl M., Oliyarnyk O., Markova I., Poruba M., Racova Z., Kazdova L., Vecera R. Beneficial effects of troxerutin on metabolic disorders in non-obese model of metabolic syndrome. PLoS One 2019; 14, e0220377.
22. Karetova D., Suchopar J., Bultas J. Diosmin/hesperidin: A cooperating tandem, or is diosmin crucial and hesperidin an inactive ingredient only? Vnitř. Lék. 2020; 66, 97–103.
23. Diosmin | C28H32O15 – PubChem. https://pubchem. ncbi.nlm.nih.gov/compound/Diosmin (17. 1. 2022).
24. Diosmin | 520-27-4. https://www.chemicalbook.com/ ChemicalProductProperty_EN_CB6443258.htm (17. 1. 2022).
25. Silvestro L., Tarcomnicu I., Dulea C., Attili N. R. B. N., Ciuca V. Peru D., Savu S. R. Confirmation of diosmetin 3-O-glucuronide as major metabolite of diosmin in humans, using micro-liquid-chromatography-mass spectrometry and ion mobility mass spectrometry. Anal. Bioanal. Chem. 2013; 405, 8295–8310.
26. Gerges S. H., Wahdan S. A., Elsherbiny D. A., El-Demerdash E. Diosmin ameliorates inflammation, insulin resistance, and fibrosis in an experimental model of non- -alcoholic steatohepatitis in rats. oxicol. Appl. Pharmacol. 2020; 401, 115101.
27. Diosmin Uses, Benefits & Dosage – Drugs.com Herbal Database. https://www.drugs.com/npp/diosmin. html (17. 1. 2022).
28. Detralex | C56H66O30 – PubChem. https://pubchem. ncbi.nlm.nih.gov/compound/Detralex (17. 1. 2022).
29. Hesperidin | C28H34O15 – PubChem. https://pubchem. ncbi.nlm.nih.gov/compound/Hesperidin (17. 1. 2022).
30. Pereira-Caro G., Polyviou T., Ludwig I. A., Nastase A. M., Moreno-Rojas J. M., Garcia A. L., Malkova D., Crozier A. Bioavailability of orange juice (poly)phenols: the impact of short-term cessation of training by male endurance athletes. Am. J. Clin. Nutr. 2017; 106, 791– 800.
31. Dhanya R., Jayamurthy P. In vitro evaluation of antidiabetic potential of hesperidin and its aglycone hesperetin under oxidative stress in skeletal muscle cell line. Cell Biochem. Funct. 2020; 38, 419–427.
32. Mas-Capdevila A., Teichenne J., Domenech-Coca C., Caimari A., Del Bas J. M., Escoté X., Crescenti A. Effect of Hesperidin on Cardiovascular Disease Risk Factors: The Role of Intestinal Microbiota on Hesperidin Bioavailability. Nutrients 2020; 12, 1488.
33. Jung U. J., Lee M. K., Park Y. B., Kang M. A., Choi M. S. Effect of citrus flavonoids on lipid metabolism and glucose- regulating enzyme mRNA levels in type-2 diabetic mice. Int. J. Biochem. Cell Biol. 2006; 38, 1134–1145.
34. HESPERIDIN METHYLCHALCONE. https://drugs.ncats.io/ drug/4T2GVA922X (17. 1. 2022).
35. Koltai T., Fliegel L. Role of Silymarin in Cancer Treatment: Facts, Hypotheses, and Questions. J. Evid. Based Integr. Med. 2022; 27, 2515690X2110688.
36. Skottova N., Krecman V. Silymarin as a potential hypocholesterolaemic drug. Physiol. Res. 1998; 47, 1–7.
37. Camini F. C., da Silva T. F., da Silva Caetano C. C., Almeida L. T., Ferraz A. C., Alves Vitoreti V. M., de Mello Silva B., de Queiroz Silva S., de Magalhães J. C., de Brito Magalhães C. L. Antiviral activity of silymarin against Mayaro virus and protective effect in virus-induced oxidative stress. Antivir. Res. 2018; 158, 8–12.
38. Vecera R., Zacharova A., Orolin J., Skottova N., Anzenbacher P. The effect of silymarin on expression of selected ABC transporters in the rat. Vet. Med. 2011; 56, 59–62.
39. Calani L., Brighenti F., Bruni R., Del Rio D. Absorption and metabolism of milk thistle flavanolignans in humans. Phytomedicine. 2012; 20, 40–46.
40. Kidd P., Head K. A Review of the Bioavailability and Clinical Efficacy of Milk Thistle Phytosome: A Silybin-Phosphatidylcholine Complex (Siliphos®). Altern Med Rev. 2005; 10, 193–203.
Labels
Pharmacy Clinical pharmacologyArticle was published in
Czech and Slovak Pharmacy
2022 Issue 4
Most read in this issue
- Neuroactive steroids – new possibilities in the treatment of postpartum depression
- Selected polyphenolic compounds and their use as a supportive therapy in metabolic syndrome
- XLIII. pracovní dny Radiofarmaceutické sekce ČSNM Hotel Strážnice, 18. až 20. května 2022
- Colour and content of some biologically active substances in honey