Ageing and Alzheimer disease – system dynamics model prediction
Authors:
Hana Tomášková; Jitka Kühnová; Kamil Kuča
Authors‘ workplace:
Fakulta informatiky a managementu, Univerzita Hradec Králové
1; Přírodovědecká fakulta, Univerzita Hradec Králové
2; Centrum základního a aplikovaného výzkumu (CZAV), Univerzita Hradec Králové
3
Published in:
Čes. slov. Farm., 2016; 65, 99-103
Category:
Original Articles
Overview
The aim of the paper is to describe asystem dynamics model applied on aprediction of the number of patients with Alzheimer’s disease in the EU in the future and related financial impacts. Dementia resulting from Alzheimer’s disease is the most widely spread type of dementia and is highly connected with the age of the person – the patient. Most people are diagnosed with Alzheimer’s disease when they are older than 64. The ageing of population will be an ongoing problem in the next few decades due to alow birth rate and increasing life expectancy. This is areason to focus on prediction models of Alzheimer’s disease and its impact on economy. The paper presents adynamic modelling approach of system dynamics. The created model of the EU population and patients with AD is expanded by afinancial submodel at the end. This submodel estimates the cost on patients from three available cost studies.
Key words:
systém dynamic • Alzhimer’s disease • population ageing
Sources
1. Hampel H., Prvulovic D., Teipel S., Jessen F., Luckhaus C., Frölich L., Riepe M. W., Dodel R., Leyhe T., Bertram L., Hoffmann W., Faltraco F. The future of Alzheimer’s disease: The next 10 years. Prog. Neurobiol. 2011; 95(4), 718–728.
2. Barker W. W., Luis C. A., Kashuba A., Luis M., Harwood D. G., Loewenstein D., Waters C., Jimison P., Shepherd E., Sevush S., Graff-Radford N., Newland D., Todd M., Miller B., Gold M., Heilman K., Doty L., Goodman I., Robinson B., Pearl G., Dickson D., Duara R. Relative frequencies of Alzheimer disease, Lewy body, vascular and frontotemporal dementia, and hippocampal sclerosis in the State of Florida Brain Bank. Alzheimer Dis. Assoc. Disord. 2002; 16(4), 203–212.
3. Wilson R. S., Segawa E., Boyle P. A., Anagnos S. E., Hizel L. P., Bennett D. A. The natural history of cognitive decline in Alzheimer’s disease. Psychol. Aging 2012; 27(4), 1008–1017.
4. alz.org. What Is Alzheimer’s? Retrieved from The Alzheimer’s Association. http://www.alz.org/alzheimers_disease_what_is_ alzheimers.asp (20. 1. 2016)
5. Alzheimer Association 2015. Alzheimer’s disease facts and figures. Alzheimers Dement 2015; 11(3), 332–384. doi:http://dx.doi.org/10.1016/j.jalz.2015.02.003
6. Maresova P., Mohelska H., Dolejs J., Kuca K. Socio-economic Aspects of Alzheimer’s Disease. Curr Alzheimer Res 2015; 12(9), 903–911.
7. Mohelska H., Maresova P., Valis M., Kuca K. Alzheimer’s disease and its treatment costs: case study in the Czech Republic. Neuropsychiatr. Dis. Treat. 2015; 11, 2349–2354.
8. Wimo A., Jönsson L., Gustavsson A., McDaid D., Ersek K., Georges J., Gulacsi L., Karpati K., Kenigsberg P., Valtonen H. The economic impact of dementia in Europe in 2008 – cost estimates from the Eurocode project. Int. J. Geriatr. Psychiatry 2011; 26(8), 825–832.
9. Mohelska H., Maresova P. Economic and Managerial Aspects of Alzheimer’s Disease in The Czech Republic, Procedia Economics and Finance 2015; 23, 521–524. http://dx.doi.org/10.1016/S2212-5671(15)00343-3.
10. Maresova P., Klimova B., Kuca K. Alzheimer’s disease: Cost cuts call for novel drugs development and national stratégy. Čes. Slov. Farm. 2015; 64, 25–30.
11. Maresova P., Tomaskova H., Kuca K. The use of simulation modelling in the analysis of the economic aspects of diseases in old age. In: Conference: EBES Eurasian Business and Economics Society, Barcelona, 2014; 369–377.
12. Carrillo M. Leveraging global resources to end the Alzheimer’s pandemic. Alzheimers Dement 2013; 9(4), 363–365. doi:10.1016/j.jalz.2013.05.1768
13. Handels R. L., Wolfs C. A., Aalten P., Joore M. A., Verhey F. R., Severens J. L. Diagnosing Alzheimer’s disease: a systematic review of economic evaluations. Alzheimers Dement 2014; 10(2), 225–237. doi:http://dx.doi.org/10.1016/j.jalz.2013.02.005. URL
14. Klimova B., Maresova P., Valis M., Hort J., Kuca K. Alzheimer’s disease and language impairments: social intervention and medical treatment. Clin. Interv. Aging 2015; 10, 1401–1408. doi:10.2147/cia.s89714. URL http://europepmc.org/ articles/PMC4555976
15. Maresova P., Klimova B. Supporting technologies for old people with dementia: a review. IFAC-PapersOnLine 2015; 48(4), 129–134. doi:http://dx.doi.org/10.1016/j.ifacol.2015.07.020.
16. Maresova P., Mohelska H., Kuca K. Economics aspects of ageing population. Procedia Economics and Finance 2015; 23, 534–538. doi:http://dx.doi.org/10.1016/S2212-5671(15)00492-X.
17. Mohelska H., Maresova P., Kuca K. Economic and managerial aspects of Alzheimer’s disease in the czech republic. Procedia Soc. Behav. Sci. 2014; 23, 521–524.
18. Tako A., Robinson S. The application of discrete event simulation and system dynamics in the logistics and supply chain context. Decis. Support Syst. 2012; 802–815.
19. Sterman, J. Business dynamics: Systems thinking and modeling for a complex world. New York, NY: Irwin McGraw-Hill 2000.
20. Forrester J. Industrial Dynamics. Cambridge, MA: MIT Press 1961.
21. Segovia-Juarez J. L., Ganguli S., Kirschner D. Identifying control mechanisms of granuloma formation during M. tuberculosis infection using an agent-based model, J. Theor. Biol. 2004; 231(3), 357–376. http://dx.doi.org/10.1016/j.jtbi.2004.06.031
22. Nefti S., Manzoor U., Manzoor S. Cognitive agent based intelligent warning system to monitor patients suffering from dementia using ambient assisted living. Information Society (i-Society) 2010; 92–97.
23. Boger J., Hoey J., Poupart P., Boutilier C., Fernie G., Mihailidis A. A planning system based on Markov decision processes to guide people with dementia through activities of daily living, in IEEE Transactions on Information Technology in Biomedicine, vol. 10, no. 2, pp. 323–333, April 2006. doi:10.1109/TITB.2006. 864480
24. Tomaskova H., Kuhnova J., Kuca, K. Economic model of Alzheimer’s disease. In: Proceedings of the 25th International Business Information Management Association Conference – Innovation Vision 2020: From Regional Development Sustainability to Global Economic Growth, IBIMA 2015; 3120–3127.
25. EUROSTAT, http://ec.europa.eu/eurostat (9. 11. 2015).
26. Arizaga R. Epidemiology of dementia. Dementia: a multidisciplinary approach 2005; 7–17.
27. Brookmeyer R., Corrada M. M., Curriero F. C., Kawas A. C. Survival follwing and diagnosis of Alzheimer disease. Arch. Neurol. 2002; 59(11): 1764–1767. doi:10.1001/archneur.59.11.1764.
28. Tomaskova H., Kuhnova J., Cimler R., Dolezal O., Kuca K. Prediction of population with Alzheimer’s disease in EU using system dynamics model. Neuropsychiatr. Dis. Treat. 2016; (in press).
29. Gerves C., Chauvin P., Bellanger M. Evaluation of full costs of care for patients with Alzheimer’s disease in france: The predominant role of informal care. J. Public. Health Policy 2014; 116(1), 114–122.
30. Schwarzkopf L. M., Marx P., Mehlig H., Wunder S., Leidl R., Donath C., Graessel E. Costs of care for dementia patients in community setting: An analysis for mild and moderate disease stage. Value Health 2011; 14(6), 827–835.
31. Jones R., Romeo R., Trigg R. K., Sato A., King D., Niecko T., Lacey L. Dependence in Alzheimer’s disease and service use costs, quality of life, and caregiver burden: The {DADE} study. Alzheimers Dement 2015; 11(3), 280–290.
32. Dodel R., Belger M., Reed C., Wimo A., Jones R., Happich M., Haro J. Determinants of societal costs in Alzheimer’s disease: Geras study baseline results. Alzheimers Dement 2015; 11(8), 933–945.
Labels
Pharmacy Clinical pharmacologyArticle was published in
Czech and Slovak Pharmacy
2016 Issue 3
Most read in this issue
- Rhodiola rosea and its neuropsychotropic effects
- Ageing and Alzheimer disease – system dynamics model prediction
- Preparation and evaluation of indomethacin loaded alginate microspheres
- The influence of hyaluronan addition on thickness, weight, uniformity of mass and water content of mucoadhesive films