#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

SHORT-WAVELENGTH AUTOMATED PERIMETRY IN DIABETIC PATIENTS WITHOUT RETINOPATHY


Authors: S. Peprníková 1;  K. Skorkovská 1,2,3;  P. Květon 4
Authors‘ workplace: Oddělení nemocí očních a optometrie, Fakultní nemocnice, u sv. Anny, Brno 1;  Katedra optometrie a ortoptiky, Lékařská fakulta, Masarykova, univerzita, Brno 2;  Oční klinika NeoVize, Brno 3;  Katedra psychologie, Pedagogická fakulta, Masarykova, univerzita, Brno 4
Published in: Čes. a slov. Oftal., 77, 2021, No. 5, p. 248-252
Category: Original Article
doi: https://doi.org/10.31348/2021/27

Overview

Aim: To compare the results of short-wavelength automated perimetry (SWAP) in diabetic patients without retinopathy and healthy subjects and show if it is possible to detect an abnormal function of the retina in diabetic patients before vascular changes on the retina develop. Further, the effect of diabetes duration and long-term glycaemic control on the visual field was examined.

Methods: The study group included 22 patients with diabetes type 1 or 2, without any signs of retinopathy. The control group consisted of 21 healthy subjects. Short-wavelength automated perimetry was performed on the Humphrey Field Analyzer (HFA 860, Carl Zeiss Meditec), SITA SWAP, 24-2 test. In diabetic patients, the duration of diabetes and the level of glycohemoglobin (HbA1c) was registered. The visual field indices MD (mean deviation) and PSD (pattern standard deviation) were compared between both groups by the Mann-Whitney test. The correlation between the visual field indices, HbA1c and duration of diabetes was assessed by the Spearman correlation coefficient.

Results: The mean value of MD in the study and control group was -3.64±3.66 dB and -1.48±2.12 dB respectively, the values in the study group were significantly lower (p < 0.05). Mean PSD in the study group was 2.92±1.04 dB and 2.23±0.33 dB in the control group, again the difference was statistically significant (p < 0.05). Patients in the study group suffered from diabetes for 17±9.4 years in average. The mean value of HbA1c in the study group was 60.64±16.63 mmol/mol. A significant correlation was found only for PSD and HbA1c (p > 0.05). The duration of diabetes had no effect on either of the visual field indices.

Conclusion: Short-wavelength sensitivity of retina seems to be affected in diabetic patients without clinically significant retinopathy suggesting a neuroretinal impairment at early stages of the retinopathy. We found no association between the visual field and the control or duration of diabetes.

Keywords:

diabetes – Diabetic retinopathy – blue-on-yellow perimetry – SWAP – glycohemoglobin


Sources

1. Racette L, Sample PA. Short-wavelength automated perimetry. Ophthalmol Clin North Am. 2003 Jun;16(2):227-237. doi: 10.1016/ s0896-1549(03)00010-5

2. Sample PA, Medeiros FA, Racette L et al. Identifying glaucomatous vision loss ith visual-function-specific perimetry in the diagnostic innovations in glaucoma study. Invest Ophthalmol Vis Sci. 2006 Aug;47(8):3381-3389. doi: 10.1167/iovs.05-1546

3. Skorkovská K. Význam strukturálních vyšetřovacích metod při sledování pacientů s oční hypertenzí [Importance of structural examination methods in the follow-up of patients with ocular hypertension]. Cesk Slov Oftalmol. 2007;63(5):335-349. Czech.

4. Minna Ng, Racette L, Pascual, JP et al. Comparing the full-threshold and Swedish interactive thresholding algorithms for short-wavelength automated perimetry. Invest Ophthalmol Vis Sci. 2009 Apr;50(4):1726-1733. doi: 10.1167/iovs.08-2718. Epub 2008 Dec 13

5. Remky A, Weber A, Hendricks S, Lichtenberg K, Arend O. Short-wavelength automated perimetry in patients with diabetes mellitus without macular edema. Graefes Arch Clin Exp Ophthalmol. 2003 Jun;241(6):468-471. doi: 10.1007/s00417-003-0666-0

6. Hudson C, Flanagan JG, Turner GS, Chen HC, Young LB, McLeod D. Short-wavelength sensitive field loss in patients with clinically significant diabetic macular oedema. Diabetologia. 1998 Aug;41(8):918-928. doi: 10.1007/s001250051008

7. Taylor HR, Keeffe JE. World blindness: a 21st century perspective. Br J Ophthalmol. 2001 Mar;85(3):261-266. doi: 10.1136/bjo.85.3.261

8. Aiello LP. Perspectives on diabetic retinopathy. Am J Ophthalmol. 2003 Jul;136(1):122-135. doi: 10.1016/s0002-9394(03)00219-8

9. Aiello LP, Cahill MT, Wong JS. Systemic considerations in the management of diabetic retinopathy. Am J Ophthalmol. 2001 Nov;132(5):760-776. doi: 10.1016/s0002-9394(01)01124-2

10. Early Treatment Diabetic Retinopathy Study Research Group. Grading diabetic retinopathy from stereoscopic color fundus photographs: an extension of the modified Airlie House classification. ETDRS report number 10. Ophthalmology. 1991 May;98(5 Suppl):786-806. Available from: https://pubmed.ncbi.nlm.nih. gov/2062513/

11. Joltikov KA, Sesi CA, de Castro VM et al. Disorganization of retinal inner layers (DRIL) and neuroretinal dysfunction in early diabetic retinopathy. Invest Ophthalmol Vis Sci. 2018 Nov;59(13):5481- 5486. doi: 10.1167/iovs.18-24955

12. Krásný J, Brunnerová R, Průhová Š et al. Test citlivosti na kontrast v časné detekci očních změn u dětí, dospívajících a mladých dospělých s diabetes mellitus 1. typu [The Contrast Sensitivity Test in Early Detection of Ocular Changes in Children, Teenagers, and Young Adults with Diabetes Mellitus Type I]. Cesk Slov Oftalmol. 2006;62(6):381-394. Czech.

13. Kurtenbach A, Kernstock C, Zrenner E, Langrova H. Electrophysiology and colour: a comparison of methods to evaluate inner retinal function. Doc Ophthalmol. 2015 Dec;131(3):159-167. doi: 10.1007/ s10633-015-9512-z. Epub 2015 Sep 23

14. Bengtsson B. A new rapid threshold algorithm for short-wavelength automated perimetry. Invest Ophthalmol Vis Sci. 2003 Mar;44:1388-1394. doi: 10.1167/iovs.02-0169

15. Bengtsson B, Heijl A, Agardh E. Visual fields correlate better than visual acuity to severity of diabetic retinopathy. Diabetologia. 2005 Dec;48(12):2494-2500. doi: 10.1007/s00125-005-0001-x. Epub 2005 Nov 1

16. Hellgren KJ, Agardh E, Bengtsson B. Progression of early retinal dysfunction in diabetes over time: results of a long-term prospective clinical study. Diabetes. 2014 Sep;63(9):3104-3111. doi: 10.2337/db13-1628

17. Verrotti A, Lobefalo L, Altobelli E, Morgese G, Chiarelli F, Gallenga PE. Static perimetry and diabetic retinopathy: a longterm follow-up. Acta Diabetol. 2001;38(2):99-105. doi: 10.1007/ s005920170021

18. Nitta K, Saito Y, Kobayashi A, Sugiyama K. Influence of clinical factors on blue-on-yellow perimetry for diabetic patients without retinopathy: comparison with white-on-white perimetry. Retina. 2006 Sep;26(7):797-802. doi: 10.1097/01.iae.0000244263.98642.61

19. Harris A, Arend O, Danis RP, Evans D, Wolf S, Martin BJ. Hyperoxia improves contrast sensitivity in early diabetic retinopathy. Br J Ophthalmol. 1996 Mar;80:209-213. doi: 10.1136/bjo.80.3.209

20. Mantyjarvi M I, Nousiainen I S, Myohanen T. Color Vision in Diabetic School Children. J. Pediatr. Ophthalmol Strabismus. 1988 Oct;25(5):244-248. Available from: https://pubmed.ncbi.nlm.nih. gov/3262736/

21. Ewing FM, Deary IJ, McCrimmon RJ, Strachan MW, Frier BM. Effect of Acute Hypoglycemia on Visual Information Processing in Adults with Type 1 Diabetes Mellitus. Physiol Behav. 1998 Jul;64(5):653- 560. doi: 10.1016/s0031-9384(98)00120-6

Labels
Ophthalmology
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#