#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Contemporary Possibilities of Artificial Vision in Blind Patients Using Artificial Neuro-prosthesis – Review


Authors: M. Šín 1;  M. Rehák 1,2;  O. Chrapek 1;  J. Řehák 1
Authors‘ workplace: Oční klinika FN a UP, Olomouc 1;  Klinik und Poliklinik für Augenheilkunde, Universität Leipzig 2
Published in: Čes. a slov. Oftal., 67, 2011, No. 1, p. 3-6
Category: Comprehensive Report

Overview

The authors present the knowledge summarization of vision substitute using artificial retinal neuroprostheses. The overview was compiled from available literature found in the Medline and Embase databases. The text focuses on global summarizing of the whole issue since the beginning of the development to the state up to date. In individual types of neuroprostheses, the advantages, disadvantages, and possible obstacles to their use in clinical practice are discussed. Furthermore, the brain plasticity and functional changes of the brain in blinds are considered. The aim of the review is not to present all information in detail, but complex overview with relevant literature sources.

Key words:
artificial vision, retinal neuroprostheses, blindness, retinitis pigmentosa, age-related macular degeneration


Sources

1. Agnew B.J., Duman J.G., Watson C.L. et al.: Cytological transformations associated with parietal cell stimulation. J. Cell. Sci., 1999; 112: 2639–46.

2. Amedi A., Raz N., Pianka P. et al.: Early visual cortex activation correlates with superior vertebral memory performance in the blind. Nat. Neurosci., 2003; 6: 758–66.

3. Baverlier D., Seville H.J.: Cross-model plasticity: where and how? Nat. Rev. Neurosci., 2002; 3: 443–452.

4. Brendly G.S.: Effect of electrical stimulation of the visual cortex. Human Neurobiology, 1982; 1: 1659–1670.

5. Brindley G.L.W.: The sensations produ­ced by electrical stimulation of the visual cortex. J. Physiol., 1968; 196: 479–493.

6. Burton H., Snyder A.Z., Konturo T.E. et al.: Adaptive changes in early and late blind a fMRI study of Braille reading. J. Neurophysiol., 2002; 87: 479–93.

7. Clausen J.: Visual sensations (Phosphenes) produced by AC sine wave stimulation. Acta Physiol. Neurol. Scand. Suppl., 1955; 94, 1–101.

8. Dobelle W.H., Mladejovsky M.G., Evans J.K. et al.: Braille reading by a blind volunteer by visual cortex stimulation. Nature, 1976; 259: 111–112.

9. Dobelle W.H., Mladejovsky M.G.: Phosphenes produced by electrical stimulation of human occipital cortex and their application to the development of a prosthesis for the blind. J Physiol, 1974; 243, 553–576.

10. Eckmiller R.: Learning retina implants with epiretinal contacts. Ophthal Res., 1997; 29, 281–289.

11. Fernandez E., Pelayo F., Romeo S. at. al.: Development of a cortical visual neuroprosthesis for the blind: the relevance of neuroplasticity. J Neural Eng, 2005; 2: 1–12.

12. Gizewski E.R., Gasser T., de Greiff A. et al.: Cross-modal plasticity for sensory and motor activation in blind subject. Neuroimage, 2003; 19: 968–75.

13. Greenberg R.J.: Visual prosthesis: A review. Neuromodulation, 2000; 3, 161–165.

14. Guven D., Weiland J.D., Fujii G.Y. et al.: Long-term stimulation by active epiretinal implants in normal and RCD1 dogs. J Neural Eng., 2005; 2: 65–73.

15. Hubel D.H., Wiesel T.: Brain mechanism of vision the perceptual World. 4. Vyd. Freeman New York 1990, p. 3–24.

16. Humayun M.S., de Juan E. Jr., Dagnelie G. et al.: Visual perception elicited by electrical stimulation of retina in blind humans. Arch Ophthalmol, 1996; 114: 40–6.

17. Humayun M.S., de Juan E., Weiland J.D. et al.: Pattern electrical stimulation of the human retina. Vision Res., 1999; 39, 2569–2576.

18. Humayun M.S., Weiland J.D., Fujii G.Y. et al.: Visual perception in a blind subject with a chronic microelectronic retinal prosthesis. Vision Res, 2003; 43: 2573–81.

19. Chow A.Y., Pardue M.T., Perlman J.I. et al.: Subretinal implantation of semi­conductor-based photodiodes: durability of novel implant designs. J Rehabil Res Dev. 2002; 39: 313–21.

20. Kolb H., Fernandez E., Nelson R.: 2005 Web vision, The neural Organization of retina and visual system .

21. Lakhanpal R., Yanai D., Weiland J.D., et al.: Advances in the development of visual prostheses. Curr Opin Ophthalmol, 2003; 14: 122–7.

22. Liu X., McCreery D.B., Carter R.R. et al.: Stability of the interface between neural tissue and chronically implanted intracortical microelectrodes IEEE trans. Rehabil Eng, 1999; 7: 315–326.

23. Normann R.A., Mayanrd E. M., Rousche P.J. et al.: A neural interface for a cortical vision prosthesis. Vis Res, 1999; 39: 2577–87.

24. Normann R.A., Mayanrd E.M., Rou­sche P.J. et al.: Cortical implants for the blind IEEE. Spectrum, 1996; 33: 54–59.

25. Normann R.A., Mayanrd E.M., Rousche P.J. et al.: Single unit recording capabilities of 100 microelectrons array. Brain Res., 1996; 726: 129–40.

26. Okawa Y., Fujikado T., Miyoshi T. et al.: Optical imaging to evaluate retinal activation by electrical currents using suprachoroidal-transretinal stimulation. Invest Ophthalmol Vis Sci. 2007; 48: 4777–84.

27. Otradovec, J.: Neurooftalmologie. 1. vyd. Grada, Praha 2004, 488 s.

28. Pardue M.T.: Neuroprotective effect of subretinal implants in the RCS rat. Invest Ophthalmol. Vis. Sci., 2005; 46: 674–82.

29. Pardue M.T., Phillips M.J., Yin H. et al.: Possible sources of neuroprotection following subretinal silicon chip implantation in RCS rats. J Neural Eng, 2005; 2: 39–47.

30. Rausschecker J.P.: Compensatory plasticity and sensory substitution in cerebral cortex. Trends Neurosci, 1995; 18: 36–43.

31. Rizzo J.F., Wyatt J., Loewenstein J. et al.: Methods and perceptual thresholds for short-term electrical stimulation of human retina with microelectrode arrays. Invest Ophthalmol Vis. Sci., 2003; 44: 5355–61.

32. Roder B., Teder-Salejarvi W., Sterr A. et al.: Improved auditory spatial tuning in blind humans. Nature, 1999; 400: 162–166.

33. Rousche P.J., Normann R.A.: Chronic recording capability of the Utah intracortical array in cat sensory cortex. J Neurosci. Methods, 1998; 82: 1–15.

34. Sachs H.G., Gabel V.P.: Retina replacement – the development of microelectric retina prothese – experience with subretina implants and new aspects. Arch Clin Exp Ophthalmol, 2004; 242: 717–723.

35. Sachs H.G., Schanze T., Brunner U. et al.: Transscleral implantation and neurophysiological testing of subretinal polyimide film electrodes in the domestic pig in visual prosthesis development. J Neural Eng, 2005; 2: 57–64.

36. Sadato N., Pascaul-Leone A., Grafoman J. et al.: Activation of the primar visual cortex by Braille reading in blind subject. Nature, 1996; 380: 526–8.

37. Sadato N., Pascaul-Leone A., Grafoman J. et al.: Neural network for Braille reading by the blind. Brain, 1998; 121: 1213–1229.

38. Sherman S.M., Guillery R.W.: Exploring the thalamus, 1.vyd. Academic Press, San Diego CA 2001, 312 p. 

39. Schmidt E.M, Bak M.J., Hambrecht F.T. et al.: Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain, 1996; 119: 507–522.

40. Turner J.N., Shain W., Szarowski D.H. et al.: Cerebral astrocyte response to micromachined silicon implants. Exp. Neurol., 1999; 156: 33–49.

41. VanBoven R.W., Hamilton R.H., Kauff­man T.: Tactile spatiale resolution blind Braille readers. Am J Ophthalmol, 2000; 30: 542.

42. Veraart C., Raftopoulos C., Mortimer J.T. et al.: Visual sensations produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode. Brain Res. 1998; 813: 181–6.

43. Walter P., Szurman P., Vobig M. et al.: Successful long-term implantation of electrically inactive epiretinal micro­electrode arrays in rabbits. Retina, 1999; 19: 546–52.

44. Weiland J.D., Liu W., Humayun M.S.: Retinal prosthesis. Annu. Rev Biomed Eng, 2005; 7: 361–401.

45. Yanai D., Lakhanpal R.R., Weiland J.D. et al.: The value of preoperative tests in the selection of blind patients for a permanent microelectronic implant. Trans Am Ophthalmol Soc, 2003; 101: 223–8.

46. Zrenner E.: Will retina implants restore Vision? Science, 2002; 295, 1022–1025.

47. Zrenner E., Miliczech K.D., Gabel V.P. et al.: The development of subretinal microphotodiodes for replacement of degenerated photoreceptors. Ophthal. Res., 1997; 29: 269–280.

48. Zrenner E. : http://www. retina-implant.de.

49. Zrenner E.: http://www.v2020.org.

Labels
Ophthalmology
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#