The Use of Transcranial Sonography at Neuro-psychiatry Interface
Authors:
P. Šilhán 1,2; D. Školoudík 3,4; M. Jelínková 3,5; MUDr. Martin Hýža 1,2; J. Valečková 6; D. Perničková 1,2; L. Hosák 7
Authors‘ workplace:
Oddělení psychiatrické, FN Ostrava
1; Katedra neurologie a psychiatrie, LF OU v Ostravě
2; Neurologická klinika LF OU a FN Ostrava
3; Ústav ošetřovatelství, FZV UP v Olomouci
4; Neurologické oddělení, Nemocnice s poliklinikou Karviná-Ráj
5; Oddělení lékařské genetiky, FN Ostrava
6; Psychiatrická klinikaLF UK a FN Hradec Králové
7
Published in:
Cesk Slov Neurol N 2016; 79/112(6): 649-654
Category:
Review Article
Overview
The use of neuroimaging methods is one of the pillars of re-convergence of neurology and psychiatry. Transcranial ultrasonography of the brainstem parenchyma is a method widely clinically used in neurology while it has also started to bear first fruit in the field of mental disorders. Sonographic imaging mainly concerns structures of the brainstem. Reduced echogenicity of the brainstem raphe is related to unipolar major depressive disorder, the majority of organic depressive disorders and several anxiety disorders but not bipolar affective disorder. According to initial results, this could be the marker of good efficacy of serotoninergic antidepressants. Hyperechogenicity of substantia nigra, typical for Parkinson’s disease, has also been frequently found in depressive states, and suggests shared etiopathogenic background. In addition, it is related to severity of medication-induced extrapyramidal syndrome in psychiatry. Verification and extension of these findings may provide clinically important markers for discrimination between unipolar and bipolar depression, a more personalized choice of an antidepressant and prediction of the risk of antipsychotic-induced extrapyramidal adverse effects. This article presents a detailed overview of brain sonographic findings when used at the interface between neurology and psychiatric border.
Key words:
transcranial ultrasonography – raphe nuclei – substantia nigra – Parkinson’s disease – mental disorders – depression
The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.
The Editorial Board declares that the manuscript met the ICMJE “uniform requirements” for biomedical papers.
Sources
1. Viták T, Seidl Z, Burgetová A. Část obecná. In: Seidl Z, Burgetová A, Hoffmannová E, eds. Radiologie pro studium a praxi. 1. vyd. Praha: Grada Publishing 2012:21– 102.
2. Walter U, Kanowski M, Kaufmann J, et al. Contemporary ultrasound systems allow high-resolution transcranial imaging of small echogenic deep intracranial structures similarly as MRI: a phantom study. Neuroimage 2008;40(2):551– 8. doi: 10.1016/ j.neuroimage.2007.12.019.
3. Huber H. Transcranial Sonography – Anatomy. Int Rev Neurobiol 2010;90:35– 45. doi: 10.1016/ S0074-7742(10)90003-2.
4. Školoudík D, Jelínková M, Blahuta J, et al. Transcranial sonography of the substantia nigra: digital image analysis. AJNR Am J Neuroradiol 2014;35(12):2273– 8. doi: 10.3174/ ajnr.A4049.
5. Stern MB. Introductory Remarks on the History and Current Applications of TCS. Int Rev Neurobiol 2010;90:2– 5. doi: 10.1016/ S0074-7742(10)90001-9.
6. Berg D, Merz B, Reiners K, et al. Five-year follow-up study of hyperechogenicity of the substantia nigra in Parkinson‘s disease. Mov Disord 2005;20(3):383– 5.
7. Gaenslen A, Berg D. Early Diagnosis of Parkinson’s Disease. Int Rev Neurobiol 2010;90:81– 92. doi: 10.1016/ S0074-7742(10)90006-8.
8. Behnke S, Runkel A, Kassar HA, et al. Long-term course of substantia nigra hyperechogenicity in Parkinson‘s disease. Mov Disord 2013;28(4):455– 9. doi: 10.1002/ mds.25193.
9. Berg D, Roggendorf W, Schröder U, et al. Echogenicity of the substantia nigra: association with increased iron content and marker for susceptibility to nigrostriatal injury. Arch Neurol 2002;59(6):999– 1005.
10. Ruprecht-Dörfler P, Berg D, Tucha O, et al. Echogenicity of the substantia nigra in relatives of patients with sporadic Parkinson‘s disease. Neuroimage 2003;18(2):416– 22.
11. Berg D, Seppi K, Behnke S, et al. Enlarged substantia nigra hyperechogenicity and risk for Parkinson disease: a 37-month 3-center study of 1,847 older persons. Arch Neurol 2011;68(7):932– 7. doi: 10.1001/ archneurol.2011.141.
12. Walter U. Transcranial sonography of the cerebral parenchyma: update on clinically relevant applications. Perspect Med 2012;1:334– 43.
13. Růžička E. Neurodegenerativní onemocnění mozku. In: Bednařík J, Ambler Z, Růžička E (eds). Klinická neurologie – část speciální I. 1. vyd. Praha: Triton 2010:539– 707.
14. Bouwmans AEP, Vlaar AM, Srulijes K, et al. Transcranial sonography for the discrimination of idiopathic Parkinson’s disease from the atypical parkinsonian syndromes. Int Rev Neurobiol 2010;90:121– 46. doi: 10.1016/ S0074-7742(10)90009-3.
15. Walter U, Dressler D, Wolters A, et al. Sonographic discrimination of dementia with Lewy bodies and Parkinson‘s disease with dementia. J Neurol 2006;253(4):448– 54.
16. Tsai CF, Wu RM, Huang YW, et al. Transcranial color-coded sonography helps differentiation between idiopathic Parkinson‘s disease and vascular parkinsonism. J Neurol 2007;254(4):501– 7.
17. Kim JS, Oh YS, Kim YI, et al. Transcranial sonography (TCS) in Parkinson’s disease (PD) and essential tremor (ET) in relation with putative premotor symptoms of PD. Arch Gerontol Geriatr 2012;54(3):e436– 9. doi: 10.1016/ j.archger.2012.01.001.
18. Godau J, Sojer M. Transcranial sonography in restless legs syndrome. Int Rev Neurobiol 2010;90:199– 215. doi: 10.1016/ S0074-7742(10)90015-9.
19. Krogias C, Eyding J, Postert T. Transcranial sonography in Huntington‘s disease. Int Rev Neurobiol 2010;90:237– 57. doi: 10.1016/ S0074-7742(10)90017-2.
20. Svetel M, Mijajlović M, Tomić A, et al. Transcranial sonography in Wilson‘s disease. Parkinsonism Relat Disord 2012;18(3):234– 8. doi: 10.1016/ j.parkreldis.2011.10.007.
21. Mijajlovic MD. Transcranial sonography in depression. Int Rev Neurobiol 2010;90:259– 72. doi: 10.1016/ S0074-7742(10)90018-4.
22. Becker G, Berg D, Lesch KP, et al. Basal limbic system alteration in major depression: a hypothesis supported by transcranial sonography and MRI findings. Int J Neuropsychopharmacol 2001;4(1):21– 31.
23. Hornung JP. The human raphe nuclei and the serotonergic system. J Chem Neuroanat 2003;26(4):331– 43.
24. Mijajlovic MD. Transcranial sonography in psychiatric diseases. Perspect Med 2012;1:357– 61.
25. Matthews PR, Harrison PJ. A morphometric, immunohistochemical, and in situ hybridization study of the dorsal raphe nucleus in major depression, bipolar disorder, schizophrenia, and suicide. J Affect Disord 2012;137(1– 3):125– 34. doi: 10.1016/ j.jad.2011.10.043.
26. Lee HY, Tae WS, Yoon HK, et al. Demonstration of decreased gray matter concentration in the midbrain encompassing the dorsal raphe nucleus and the limbic subcortical regions in major depressive disorder: an optimized voxel-based morphometry study. J Affect Disord 2011;133(1– 2):128– 36. doi: 10.1016/ j.jad.2011.04.006.
27. Becker G, Struck M, Bogdahn U, et al. Echogenicity of the brainstem raphe in patients with major depression. Psychiatry Res 1994;55(2):75– 84.
28. Becker G, Becker T, Struck M, et al. Reduced echogenicity of brainstem raphe specific to unipolar depression: a transcranial color-coded real-time sonography study. Biol Psychiatry 1995;38(3):180– 4.
29. Steele JD, Bastin ME, Wardlaw JM, et al. Possible structural abnormality of the brainstem in unipolar depressive illness: a transcranial ultrasound and diffusion tensor magnetic resonance imaging study. J Neurol Neurosurg Psychiatry 2005;76(11):1510– 5.
30. Walter U, Prudente-Morrissey L, Herpertz SC, et al. Relationship of brainstem raphe echogenicity and clinical findings in depressive states. Psychiatry Res 2007;155(1):67– 73.
31. Hoeppner J, Prudente-Morrissey L, Herpertz SC, et al. Substantia nigra hyperechogenicity in depressive subjects relates to motor asymmetry and impaired word fluency. Eur Arch Psychiatry Clin Neurosci 2009;259(2):92– 7. doi: 10.1007/ s00406-008-0840-9.
32. Budisic M, Karlovic D, Trkanjec Z, et al. Brainstem raphe lesion in patients with major depressive disorder and in patients with suicidal ideation recorded on transcranial sonography. Eur Arch Psychiatry Clin Neurosci 2010;260(3):203– 8. doi: 10.1007/ s00406-009-0043-z.
33. Ghourchian S, Zamani B, Poorkosary K, et al. Raphe nuclei echogenicity changes in major depression. Med J Islam Repub Iran 2014;28:9.
34. Reijnders JS, Ehrt U, Weber WE, et al. A systematic review of prevalence studies of depression in Parkinson‘s disease. Mov Disord 2008;23(2):183– 9.
35. Lieberman A. Depression in Parkinson‘s disease – a review. Acta Neurol Scand 2006;113(1):1– 8.
36. Walter U, Hoeppner J, Prudente-Morrissey L, et al. Parkinson‘s disease-like midbrain sonography abnormalities are frequent in depressive disorders. Brain 2007;130(7):1799– 807.
37. Walter U, Školoudík D, Berg D. Transcranial sonography findings related to non-motor features of Parkinson‘s disease. J Neurol Sci 2010;289:123– 7. doi: 10.1016/ j.jns.2009.08.027.
38. Krogias C, Hoffmann K, Eyding J, et al. Evaluation of basal ganglia, brainstem raphe and ventricles in bipolar disorder by transcranial sonography. Psychiatry Res 2011;194(2):190– 7. doi: 10.1016/ j.pscychresns.2011.04.002.
39. Šilhán P, Jelínková M, Walter U, et al. Transcranial sonography of brainstem structures in panic disorder. Psychiatry Res 2015;234(1):137– 43. doi: 10.1016/ j.pscychresns.2015.09.010.
40. Beck AT, Epstein N, Brown G, et al. An inventory for measuring clinical anxiety: Psychometric properties. J Consult Clin Psychol 1988;56(6):893– 7.
41. Mavrogiorgou P, Nalato F, Meves S, et al. Transcranial sonography in obsessive-compulsive disorder. J Psychiatr Res 2013;47(11):1642– 8. doi: 10.1016/ j.jpsychires.2013.07.020.
42. Berg D, Jabs B, Merschodorf U, et al. Echogenicity of substantia Nigra Determined by Transcranial Ultrasound correlates with severity of parkinsonian symptoms induced by neuroleptic therapy. Biol Psychiatry 2001;50(6):463– 7.
43. Wollenweber FA, Schomburg R, Probst M, et al. Width of the third ventricle assessed by transcranial sonography can monitor brain atrophy in a time and cost-effective manner – results from a longitudinal study on 500 subjects. Psychiatry Res 2011;191(3):212– 6. doi: 10.1016/ j.pscychresns.2010.09.010.
44. Krauel K, Feldhaus HC, Simon A, et al. Increased echogenicity of the substantia nigra in children and adolescents with attention-deficit/ hyperactivity disorder. Biol Psychiatry 2010;68(4):352– 8. doi: 10.1016/ j.biopsych.2010.01.013.
45. Iova A, Garmashov A, Androuchtchenko N, et al. Postnatal decrease in substantia nigra echogenicity. Implications for the pathogenesis of Parkinson‘s disease. J Neurol 2004;251(12):1451– 4.
46. Movsas TZ, Pinto-Martin JA, Whitaker AH, et al. Autism spectrum disorder is associated with ventricular enlargement in a low birth weight population. J Pediatr 2013;163(1):73– 8. doi: 10.1016/ j.jpeds.2012.12.084.
47. Bradstreet JJ, Pacini S, Ruggiero M. A New Metho-dology of Viewing Extra-Axial Fluid and CorticalAbnormalities in Children with Autism via Transcranial Ultrasonography. Front Hum Neurosci 2014;7:934. doi: 10.3389/ fnhum.2013.00934.
Labels
Paediatric neurology Neurosurgery NeurologyArticle was published in
Czech and Slovak Neurology and Neurosurgery
2016 Issue 6
Most read in this issue
- Anterior Cervical Osteophytes Causing Dysphagia and Dyspnea – Two Case Reports
- Depression in Selected Neurological Disorders
- Surgical Treatment of Extensive Fibrous Dysplasia in the Craniofacial Region – a Case Report
- Autoimmune Encephalitis – Case Reports