Changes of Effective Connectivity after Facilitation Physiotherapy in Multiple Sclerosis
Authors:
M. Procházková 1; J. Tintěra 2; A. Procházka 3; P. Martinková 4; K. Řasová 1
Authors‘ workplace:
Klinika rehabilitačního lékařství 3. LF UK a FN Královské Vinohrady, Praha
1; Pracoviště radiodiagnostiky a intervenční radiologie, IKEM, Praha
2; Ústav biofyziky a informatiky, 1. LF UK v Praze
3; Ústav informatiky, AV ČR, v. v. i., Praha
4
Published in:
Cesk Slov Neurol N 2015; 78/111(4): 423-429
Category:
Original Paper
doi:
https://doi.org/10.14735/amcsnn2015423
Overview
Aim:
The aim was to objectify neuroplasticity after physiotherapy using an innovative method of functional magnetic resonance imaging data analysis (determination of effective connectivity) in multiple sclerosis patients.
Material and methods:
Twelve patients (mean: age 44.3 ± 9.2 years, EDSS 3.7 ± 0.9, disease duration 9.3 ± 6.0 years underwent Motor program activation therapy (one hour therapy, twice a week). Clinical and fMRI examination during a motoric task for fingers was carried out before and after the therapy. The clinical examination focused on the upper extremity function (evaluation of tremor, diadochokinesis, ataxia, muscle strength and spasticity). Effective connectivity between supplementary motor and right and left primary motor areas was determined using the Statistical Parametric Mapping software. A control group consisted of 12 healthy controls (mean age 39.4 ± 12.2).
Results:
The analysis of effective connectivity showed strong connection between the supplementary motor area and both primary motor areas (patients had stronger connection in more cases than healthy controls, significant between the supplementary motor area and the left primary motor area, p = 0.005). Effective connectivity between the right and left primary motor areas was significantly weaker. After the therapy, improvement occurred in all the clinical tests (right hand index p < 0.001, left hand index p < 0.001) but no changes were observed in effective connectivity.
Conclusion:
Effective connectivity represents a possible approach to objectification of brain plasticity. Facilitation physiotherapy had a significant effect on clinical function while significant changes of effective connectivity were not demonstrated.
Key words:
multiple sclerosis – physiotherapy techniques – functional magnetic resonance imaging – neuroplasticity
The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.
The Editorial Board declares that the manuscript met the ICMJE “uniform requirements” for biomedical papers.
Sources
1. Gijbels D, Lamers I, Kerkhofs L, Alders G, Knippenberg E, Feys P. The Armeo Spring as training tool to improve upper limb functionality in multiple sclerosis: a pilot study. J Neuroeng Rehabil 2011; 8: 5. doi: 10.1186/ 1743‑ 0003‑ 8‑ 5.
2. Baert I, Freeman J, Smedal T, Dalgas U, Romberg A, Kalron A et al. Responsiveness and clinically meaningful improvement, according to disability level, of five walking measures after rehabilitation in multiple sclerosis: a European multicenter study. Neurorehabil Neural Repair 2014; 27(7): 621– 631. doi: 10.1177/ 1545968314521010.
3. Freeman J, Fox E, Gear M, Hough A. Pilates based core stability training in ambulant individuals with multiple sclerosis: protocol for a multi‑centre randomised controlled trial. BMC Neurol 2012; 12: 19. doi: 10.1186/ 1471‑ 2377‑ 12‑ 19.
4. World Health Organization. International classification of functioning, disability and health (ICF) 2001. [online]. Available from URL: http:/ / www.who.int/ classifications/ icf/ en.
5. Dalgas U, Ingemann‑Hansen T, Stenager E. Physical Exercise and MS Recommendations. Int MS J 2009; 16(1): 5– 11.
6. Khan F, Pallant JF, Zhang N, Turner‑ Stokes L. Clinical practice improvement approach in multiple sclerosis rehabilitation: a pilot study. Int J Rehabil Res 2010; 33(3): 238– 247. doi: 10.1097/ MRR.0b013e328338b05f.
7. Morgen K, Kadom N, Sawaki L, Tessitore A, Ohayon J, McFarland H et al. Training‑ dependent plasticity in patients with multiple sclerosis. Brain 2004; 127(11): 2506– 2517.
8. Ballario C, Ferri M, Nagel J, Rosario R. Functional MRI and neuronal plasticity depending on the motor training in multiple sclerosis. Oral Presentations. Mult Scler 2006; 12(1): 42.
9. Chouinard PA, Leonard G, Paus T. Changes in effective connectivity of the primary motor cortex in stroke patients after rehabilitative therapy. Exp Neurol 2006; 201(2): 375– 387.
10. Sporns O. Brain connectivity. Scholarpedia 2007; 2(10): 4695.
11. Marreiros A. Dynamic Causal Modelling for fMRI. Welcome Trust Center For Neuroimaging. London: University College London 2010.
12. Friston KJ. Functional and effective connectivity: a review. Brain Connect 2011; 1(1): 13– 36. doi: 10.1089/ brain.2011.0008.
13. Rasová K, Martinkova P, Vyskotova J, Sedova M. Assessment set for evaluation of clinical outcomes in multiple sclerosis: psychometric properties. Patient Relat Outcome Meas 2012; 3: 59– 70. doi: 10.2147/ PROM.S32241.
14. Řasová K. Fyzioterapie u neurologicky nemocných (se zaměřením na roztroušenou sklerózu mozkomíšní). 1. vyd. Praha: CEROS 2007.
15. Walter B, Blecker C, Kirsch P, Sammer G, Schienle A, Stark R et al. MARINA: an easy to use tool for the creation of MAsks for Region of INterest Analyses [abstract]. Presented at the 9th International Conference on Functional Mapping of the Human Brain, June 19– 22, 2003, New York, NY. Available on CD‑ Rom in NeuroImage 2003: 19(2).
16. Krásenský J, Obenberger J, Havrdova E, Zalisova M, Stykarova P, Dolezal O et al. Objektivizace pokroků v rehabilitaci chronicky nemocných s roztroušenou sklerózou pomocí funkční magnetické rezonance: metodika vyšetření změn mozkové aktivity pomocí funkční magnetické rezonance. Lékař a technika 2003; 34(4): 127– 136.
17. Rasova K, Havrdova E, Brandejsky P, Zalisova M, Foubikova B, Martinkova P. Comparison of the influence of different rehabilitation programmes on clinical, spirometric and spiroergometric parameters in patients with multiple sclerosis. Mult Scler 2006; 12(2): 227– 234.
18. Ibrahim I, Tintera J, Skoch A, Jiru F, Hlustik P, Martinkova P et al. Fractional anisotropy and mean diffusivity in the corpus callosum of patients with multiple sclerosis: the effect of physiotherapy. Neuroradiology 2011; 53(11): 917– 926. doi: 10.1007/ s00234‑ 011‑ 0879‑ 6.
19. Rasova K, Krasensky J, Havrdova E, Obenberger J, Seidel Z, Dolezal O et al. Is it possible to actively and purposely make use of plasticity and adaptability in the neurorehabilitation treatment of multiple sclerosis patients? A pilot project. Clin Rehabil 2005; 19(2): 170– 181.
20. Kasess C, Windischberger C, Cunnington R, Lanzenberger R, Pezawas L, Moser E. The suppressive influence of SMA on M1 in motor imagery revealed by fMRI and dynamic casual modeling. Neuroimage 2008; 40(2): 828– 837. doi: 10.1016/ j.neuroimage.2007.11.040.
21. Leavitt VM, Wylie G, Genova HM, Chiaravalloti ND, DeLuca J. Altered effective connectivity during performance of an information processing speed task in multiple sclerosis. Mult Scler 2012; 18(4): 409– 417. doi: 10.1177/ 1352458511423651.
22. Rocca MA, Absinta M, Moiola L, Ghezzi A, Colombo B, Martinelli V et al. Functional and structural connectivity of the motor network in pediatric and adult‑ onset relapsing‑ remitting multiple sclerosis. Radiology 2010; 254(2): 541– 550. doi: 10.1148/ radiol.09090463.
23. Wahl M, Hübers A, Lauterbach‑ Soon B, Hattingen E, Jung P, Cohen LG et al. Motor callosal disconnection in early relapsing‑ remitting multiple sclerosis. Hum Brain Mapp 2011; 32(6): 846– 855. doi: 10.1002/ hbm.21071.
Labels
Paediatric neurology Neurosurgery NeurologyArticle was published in
Czech and Slovak Neurology and Neurosurgery
2015 Issue 4
Most read in this issue
- Therapy of Pudendal Neuralgia – Five Years of Experience
- The Contribution of Magnetic Resonance Imaging to the Diagnosis of Epilepsy
- Experimental Treatment of Spinal Cord Injuries
- TLIF Technique for Treatment of Foraminal Lumbar Disc Herniation in Isthmic Spondylolisthesis