Hemophilia and bone tissue metabolism
Authors:
Palička Vladimír; Horáčková Jana; Pavlíková Ladislava; Hyšpler Radomír
Authors‘ workplace:
Osteocentrum, Ústav klinické biochemie a diagnostiky LF UK v Hradci Králové a FN Hradec Králové
Published in:
Clinical Osteology 2024; 29(4): 132-135
Category:
Overview
Findings of reduced bone mineral density and osteoporosis in hemophilia patients are gradually increasing and will certainly increase with successful treatment and increasing life expectancy. Older, not very numerous studies are being replaced by large meta-analyses showing significant reduction of bone mineral density in hemophiliacs. However, it is not only the effect of increasing age that is being demonstrated, but also the direct and indirect pathobiochemical links between coagulation factor deficiency and the effect of their therapeutic administration on bone tissue metabolism. A crucial role is played by the influence of the RANK/RANKL/OPG system and the direct binding of factor VIII or IX and their complex with von Willebrand factor to its components. The influence of different therapeutic pathways in the treatment of hemophiliacs is not negligible.
Keywords:
hemophilia – osteoporosis – RANK/RANKL/OPG system
Sources
Lin X, Gao P, Zhang Q et al. Pathogenesis and treatment of osteoporosis in patients with hemophilia. Arch Osteoporos 2023; 18(1): 17. Dostupné z DOI: <https://doi: 10.1007/s11657–022–01203–9>.
Gebetsberger J, Schirmer M, Wurzer WJ et al. Low Bone Mineral Density in Hemophiliacs. Front Med 2022; 9: 794456. Dostupné z DOI: <https://doi: 10.3389/fmed.2022.794456>.
Gerstner G, Damiano ML, Tom A et al. Prevalence and risk factors associated with decreased bone mineral density in patients with haemophilia. Haemophilia 2009; 15(2): 559–565. Dostupné z DOI: <https://doi: 10.1111/j.1365–2516.2008.01963.x>.
Khawaji M, Astermark J, Åkesson K et al. Physical activity and joint function in adults with severe haemophilia on long-term prophylaxis. Blood Coagul Fibrinolys 2011; 22(1): 50–55. Dostupné z DOI: <https://doi: 10.1097/MBC.0b013e32834128c6>.
Uzuner B, Ketenci S, Durmus D et al. The frequency of sarcopenia in haemophilia patients: Effects on musculoskeletal health and functional performance. Haemophilia 2024; 30(2): 505–512. Dostupné z DOI: <https://doi: 10.1111/hae.14945>.
Soucek O, Komrska V, Hlavka Z et al. Boys with haemophilia have low trabecular bone mineral and sarcopenia, but normal bone strength at the radius. Haemophilia 2012; 18(2): 222–228. Dostupné z DOI: <https://doi: 10.1111/j.1365–2516.2011.02616.x>.
Andrawes NG, Fayek MH, El-Din NS. Effect of low-dose factor VIII prophylaxis therapy on bone mineral density and 25(OH) vitamin D level in children with severe haemophilia A. Haemophilia 2020; 26(2): 325–332. Dostupné z DOI: <https://doi: 10.1111/hae.13917>.
Anagnostis P, Vakalopoulou S, Vyzantiadis TA et al. The clinical utility of bone turnover markers in the evaluation of bone disease in patients with haemophilia A and B. Haemophilia 2014; 20(2): 268–275. Dostupné z DOI: <https://doi: 10.1111/hae.12271>.
Kempton CL, Antun A, Antoniucci DM et al. Bone density in haemophilia: a single institutional cross-sectional study. Haemophilia 2014; 20(1): 121–128. Dostupné z DOI: <https://doi: 10.1111/hae.12240>.
Biernat MM, Jedrzejuk D, Urbaniak-Kujda D et al. Association of bone mineral density and potential risk factors for osteoporosis in patients with severe haemophilia A. Haemophilia 2024; 30(1): 130–139. Dostupné z DOI: <https://doi: 10.1111/hae.14903>.
Cadé M, Munoz-Garcia J, Babuty A et al. FVIII at the crossroad of coagulation, bone and immune biology: Emerging evidence of biological activities beyond hemostasis. Drug Discovery Today 2022; 27(1): 102–116. Dostupné z DOI: <https://doi: 10.1016/j.drudis.2021.07.015>.
Zhang M, Song K, Wu W. Bone mineral density in haemophilia patients: A systematic review and meta-analysis. Haemophilia 2024; 30(2): 276–285. Dostupné z DOI: <https://doi: 10.1111/hae.14951>.
Goldscheitter G, Recht M, Sochacki P et al. Biomarkers of bone disease in persons with haemophilia. Haemophilia 2021; 27(1): 149–155. Dostupné z DOI: <https://doi: 10.1111/hae.13986>.
Taves S, Sun J, Livingston EW et al. Hemophilia A and B mice, but not VWF-/- mice, display bone defects in congenital development and remodelling after injury. Scientific Rep 2019; 9(1): 14428. Dostupné z DOI: <https://doi: 10.1038/s41598–019–50787–9>.
Larson EA, Taylor JA. Factor VIII Plays a Direct Role in Osteoblast Development. Blood 2017; 130(S-1): 3661. Dostupné z DOI: <https://doi: 10.1182/blood.V130.Suppl_1.3661.366116462024>.
El-Mikkawy DM, Elbadawy MA, El-Ghany SMA et al. Serum Sclerostin Level and Bone Mineral Density in Pediatric Hemophilic Arthropathy. Ind J Pediat 2019; 86(6): 515–519. Dostupné z DOI: <https://doi: 10.1007/s12098–019–02855–1>.
Gaudio A, Xourafa A, Rapisarda R et al. Hematological Diseases and Osteoporosis. Int J Mol Sci 2020; 21(10): 3538. Dostupné z DOI: <https://doi: 10.3390/ijms21103538>.
Rodriquez-Merchan EC, Valentino LA. Increased bone resorption in hemophilia. Blood Rev 2019; 33(1): 6–10. Dostupné z DOI: <https://doi: 10.1016/j.blre.2018.05.002>.
Labels
Clinical biochemistry Paediatric gynaecology Paediatric radiology Paediatric rheumatology Endocrinology Gynaecology and obstetrics Internal medicine Orthopaedics General practitioner for adults Radiodiagnostics Rehabilitation Rheumatology Traumatology OsteologyArticle was published in
Clinical Osteology
2024 Issue 4
Most read in this issue
- Charcot's osteoarthropathy or Sudeck's Syndrome? A case report
- Steroid contraception – the influence on bone metabolism
- Osteoporosis and liver diseases
- What's (new) in the guidelines of the osteological societies of the German-speaking countries published in 2023