#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Somatostatin receptor PET beyond the neuroendocrine tumors of the gastrointestinal tract – the review of literature


Authors: D. Zogala
Authors‘ workplace: Ústav nukleární medicíny 1. LF UK a VFN v Praze
Published in: Klin Onkol 2021; 34(4): 291-299
Category: Review
doi: https://doi.org/10.48095/ccko2021291

Overview

Background: PET of the somatostatine receptors (SSR) is a well-established functional imaging modality in the dia­gnosis of the neuroendocrine tumours (NET) of the gastro-entero-pancreatic origin (GEP). However, it can have a major impact also in other clinical entities. Purpose: To present a literature review focusing on the effectivity of SSR PET in the dia­gnosis beyond GEP NET. Conclusion: SSR PET provides an accurate dia­gnosis of pulmonary NET, pheochromocytoma and paraganglioma, it may have an important impact on their treatment and clinical management. It allows a detailed estimation of the extent of meningeoma, contributes to precise target volumes for radiotherapy delineation and is sensitive in its residuum or recurrence detection. It can be a valuable method in the syndromes of multiple endocrine neoplasia and in the localization of the source of the ectopic Cushing syndrome. It can be used in the medullary thyroid cancer. An important role of SSR PET lies in the planning and monitoring of the peptide-receptor radionuclide therapy embraced in the theranostic concept.

Keywords:

PET – PET/CT – PET/MR – Somatostatin


Sources

1. Pauwels E, Cleeren F, Bormans G et al. Somatostatin receptor PET ligands – the next generation for clinical practice. Am J Nucl Med Mol Imaging 2018; 8 (5): 311–331.

2. Sharma P, Singh H, Bal C et al. PET/CT imaging of neuroendocrine tumors with (68) Gallium-labeled somatostatin analogues: an overview and single institutional experience from India. Indian J Nucl Med 2014; 29 (1): 2–12. doi: 10.4103/0972-3919.125760.

3. Schreiter NF, Brenner W, Nogami M et al. Cost comparison of 111In-DTPA-octreotide scintigraphy and 68Ga-DOTATOC PET/CT for staging enteropancreatic neuroendocrine tumours. Eur J Nucl Med Mol Imaging 2012; 39 (1): 72–82. doi: 10.1007/s00259-011-1935-5.

4. Segard T, Morandeau LM, Geelhoed EA et al. 68Ga-somatostatin analogue PET-CT: analysis of costs and benefits in a public hospital setting. J Med Imaging Radiat Oncol 2018; 62 (1): 57–63.

5. NETSPOT Prescribing Information. [online]. Avail­able from: https: //s3-adacap-product.s3.eu-west-1.amazonaws.com/wp-content/uploads/2020/10/28081705/nda208547-pi-20201020-clean.pdf.

6. NCCN Guidelines Version 2.2020 Neuroendocrine and Adrenal Tumors. [online]. Available from: https: //www.nccn.org/guidelines/guidelines-detail?category= 1&id=1448.

7. Kayani I, Conry BG, Groves AM et al. A comparison of 68Ga-DOTATATE and 18F-FDG PET/CT in pulmonary neuroendocrine tumors. J Nucl Med 2009; 50 (12): 1927–1932. doi: 10.2967/jnumed.109.066639.

8. Lococo F, Rapicetta C, Mengoli MC et al. Diagnostic performances of 68Ga-DOTATOC versus 18Fluorodeoxyglucose positron emission tomography in pulmonary carcinoid tumours and interrelationship with histological features. Interact Cardiovasc Thorac Surg 2019; 28 (6): 957–960. doi: 10.1093/icvts/ivz009.

9. Venkitaraman B, Karunanithi S, Kumar A et al. Role of 68Ga-DOTATOC PET/CT in initial evaluation of patients with suspected bronchopulmonary carcinoid. Eur J Nucl Med Mol Imaging 2014; 41 (5): 856–864. doi: 10.1007/s00259-013-2659-5.

10. Zidan L, Iravani A, Kong G et al. Theranostic implications of molecular imaging phenotype of well-differentiated pulmonary carcinoid based on 68Ga-DOTATATE PET/CT and 18F-FDG PET/CT. Eur J Nucl Med Mol Imaging 2021; 48 (1): 204–216. doi: 10.1007/s00259-020-049 15-7.

11. Treglia G, Giovanella L, Lococo F. Evolving role of PET/CT with different tracers in the evaluation of pulmonary neuroendocrine tumours. Eur J Nucl Med Mol Imaging 2014; 41 (5): 853–855. doi: 10.1007/s00259-014-2695-9.

12. Purandare NC, Puranik A, Agrawal A et al. Does 68Ga-DOTA-NOC-PET/CT impact staging and therapeutic decision making in pulmonary carcinoid tumors? Nucl Med Commun 2020; 41 (10): 1040–1046. doi: 10.1097/MNM.0000000000001248.

13. Strosberg J, El-Haddad G, Wolin E et al. Phase 3 trial of 177Lu-dotatate for midgut neuroendocrine tumors. N Engl J Med 2017; 376 (2): 125–135. doi: 10.1056/NEJMoa1607427.

14. Lim LE, Chan DL, Thomas D et al. Australian experience of peptide receptor radionuclide therapy in lung neuroendocrine tumours. Oncotarget 2020; 11 (27): 2636–2646. doi: 10.18632/oncotarget.27659.

15. Prasad V, Steffen IG, Pavel M et al. Somatostatin receptor PET/CT in restaging of typical and atypical lung carcinoids. EJNMMI Res 2015; 5 (1): 53–64. doi: 10.1186/s13550-015-0130-2.

16. Bozkurt MF, Virgolini I, Balogova S et al. Guideline for PET/CT imaging of neuroendocrine neoplasms with 68Ga-DOTA-conjugated somatostatin receptor targeting peptides and 18F-DOPA. Eur J Nucl Med Mol Imaging 2017; 44 (9): 1588–1601. doi: 10.1007/s00259-017-3728-y.

17. Taieb D, Jha A, Treglia G et al. Molecular imaging and radionuclide therapy of pheochromocytoma and paraganglioma in the era of genomic characterization of disease subgroups. Endocr Relat Cancer 2019; 26 (11): R627–R652. doi: 10.1530/ERC-19-0165.

18. Taieb D, Hicks RJ, Hindie E et al. European association of nuclear medicine practice guideline/society of nuclear medicine and molecular imaging procedure standard 2019 for radionuclide imaging of phaeochromocytoma and paraganglioma. Eur J Nucl Med Mol Imaging 2019; 46 (10): 2112–2137. doi: 10.1007/s00259-019-04398-1.

19. Naswa N, Sharma P, Nazar AH et al. Prospective evaluation of 68Ga-DOTA-NOC PET-CT in phaeochromocytoma and paraganglioma: preliminary results from a single centre study. Eur Radiol 2012; 22 (3): 710–719. doi: 10.1007/s00330-011-2289-x.

20. Maurice JB, Troke R, Win Z et al. A comparison of the performance of 68Ga-DOTATATE PET/CT and 123I-MIBG SPECT in the diagnosis and follow-up of phaeochromocytoma and paraganglioma. Eur J Nucl Med Mol Imaging 2012; 39 (8): 1266–1270. doi: 10.1007/s00259-012-2119-7.

21. Sharma P, Dhull VS, Arora S et al. Diagnostic accuracy of (68) Ga-DOTANOC PET/CT imaging in pheochromocytoma. Eur J Nucl Med Mol Imaging 2014; 41 (3): 494–504. doi: 10.1007/s00259-013-2598-1.

22. Shahrokhi P, Emami-Ardekani A, Harsini S et al. 68Ga-DOTATATE PET/CT compared with 131I-MIBG SPECT/CT in the evaluation of neural crest tumors. Asia Ocean J Nucl Med Biol 2020; 8 (1): 8–17. doi: 10.22038/aojnmb.2019.41343.1280.

23. Singh D, Shukla J, Walia R et al. Role of [68Ga]DOTANOC PET/computed tomography and [131I]MIBG scintigraphy in the management of patients with pheochromocytoma and paraganglioma: a prospective study. Nucl Med Commun 2020; 41 (10): 1047–1059. doi: 10.1097/MNM.0000000000001251.

24. Archier A, Varoquaux A, Garrigue P et al. Prospective comparison of (68) Ga-DOTATATE and (18) F-FDOPA PET/CT in patients with various pheochromocytomas and paragangliomas with emphasis on sporadic cases. Eur J Nucl Med Mol Imaging 2016; 43 (7): 1248–1257. doi: 10.1007/s00259-015-3268-2.

25. Janssen I, Chen CC, Millo CM et al. PET/CT comparing (68) Ga-DOTATATE and other radiopharmaceuticals and in comparison with CT/MRI for the localization of sporadic metastatic pheochromocytoma and paraganglioma. Eur J Nucl Med Mol Imaging 2016; 43 (10): 1784–1791. doi: 10.1007/s00259-016-3357-x.

26. Kroiss AS, Uprimny C, Shulkin BL et al. 68Ga-DOTATOC PET/CT in the localization of head and neck paraganglioma compared with 18F-DOPA PET/CT and 123I-MIBG SPECT/CT. Nucl Med Biol 2019; 71: 47–53. doi: 10.1016/j.nucmedbio.2019.04.003.

27. Han S, Suh CH, Woo S et al. Performance of 68Ga-DOTA-conjugated somatostatin receptor-targeting peptide PET in detection of pheochromocytoma and paraganglioma: a systematic review and metaanalysis. J Nucl Med 2019; 60 (3): 369–376. doi: 10.2967/jnumed.118.211706.

28. Janssen I, Blanchet EM, Adams K et al. Superiority of [68Ga]-DOTATATE PET/CT to other functional imaging modalities in the localization of SDHB-associated metastatic pheochromocytoma and paraganglioma. Clin Cancer Res 2015; 21 (17): 3888–3895. doi: 10.1158/1078-0432.CCR-14-2751.

29. Kong G, Schenberg T, Yates CJ et al. The Role of 68Ga-DOTA-octreotate PET/CT in follow-up of SDH-associated pheochromocytoma and paraganglioma. J Clin Endocrinol Metab 2019; 104 (11): 5091–5099. doi: 10.1210/jc.2019-00018.

30. Simsek DH, Sanli Y, Kuyumcu S et al. 68Ga-DOTATATE PET-CT imaging in carotid body paragangliomas. Ann Nucl Med 2018; 32 (4): 297–301.

31. Jha A, Ling A, Millo C et al. Superiority of 68Ga-DOTATATE over 18F-FDG and anatomic imaging in the detection of succinate dehydrogenase mutation (SDHx) -related pheochromocytoma and paraganglioma in the pediatric population. Eur J Nucl Med Mol Imaging 2018; 45 (5): 787–797. doi: 10.1007/s00259-017- 3896-9.

32. Jaiswal SK, Sarathi V, Malhotra G et al. The utility of 68Ga-DOTATATE PET/CT in localizing primary/metastatic pheochromocytoma and paraganglioma in children and adolescents – a single-center experience. J Pediatr Endocrinol Metab 2020; 34 (1): 109–119. doi: 10.1515/jpem-2020-0354.

33. Jaiswal SK, Sarathi V, Memon SS et al. 177Lu-DOTATATE therapy in metastatic/inoperable pheochromocytoma-paraganglioma. Endocr Connect 2020; 9 (9): 864–873. doi: 10.1530/EC-20-0292.

34. Kong G, Grozinsky-Glasberg S, Hofman MS et al. Efficacy of peptide receptor radionuclide therapy for functional metastatic paraganglioma and pheochromocytoma. J Clin Endocrinol Metab 2017; 102 (9): 3278–3287. doi: 10.1210/jc.2017-00816.

35. Fassnacht M, Assie G, Baudin E et al. Adrenocortical carcinomas and malignant phaeochromocytomas: ESMO-EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2020; 31 (11): 1476–1490. doi: 10.1016/j.annonc.2020.08.2099.

36. Skoura E. Depicting medullary thyroid cancer recurrence: the past and the future of nuclear medicine imaging. Int J Endocrinol Metab 2013; 11 (4): e8156. doi: 10.5812/ijem.8156.

37. Ozkan ZG, Kuyumcu S, Uzum AK et al. Comparison of 68Ga-DOTATATE PET-CT, 18F-FDG PET-CT and 99mTc- (V) DMSA scintigraphy in the detection of recurrent or metastatic medullary thyroid carcinoma. Nucl Med Commun 2015; 36 (3): 242–250. doi: 10.1097/MNM.0000000000000240.

38. Yamaga LY, Cunha ML, Campos Neto GC et al. 68Ga-DOTATATE PET/CT in recurrent medullary thyroid carcinoma: a lesion-by-lesion comparison with 111In-octreotide SPECT/CT and conventional imaging. Eur J Nucl Med Mol Imaging 2017; 44 (10): 1695–1701. doi: 10.1007/s00259-017-3701-9.

39. Sahin E, Elboga U. The role of tumour biomarkers in choosing the appropriate positron emission tomography imaging in follow-up of medullary thyroid cancer. J Med Imaging Radiat Oncol 2020; 64 (6): 756–761. doi: 10.1111/1754-9485.13081.

40. Souteiro P, Gouveia P, Ferreira G et al. 68Ga-DOTANOC and 18F-FDG PET/CT in metastatic medullary thyroid carcinoma: novel correlations with tumoral biomarkers. Endocrine 2019; 64 (2): 322–329. doi: 10.1007/s12020-019-01846-8.

41. Tuncel M, Kilickap S, Suslu N. Clinical impact of 68Ga-DOTATATE PET-CT imaging in patients with medullary thyroid cancer. Ann Nucl Med 2020; 34 (9): 663–674. doi: 10.1007/s12149-020-01494-3.

42. Treglia G, Tamburello A, Giovanella L. Detection rate of somatostatin receptor PET in patients with recurrent medullary thyroid carcinoma: a systematic review and a meta-analysis. Hormones (Athens) 2017; 16 (4): 362–372. doi: 10.14310/horm.2002.1756.

43. Treglia G, Castaldi P, Villani MF et al. Comparison of different positron emission tomography tracers in patients with recurrent medullary thyroid carcinoma: our experience and a review of the literature. Recent Results Cancer Res 2013; 194: 385–393. doi: 10.1007/978-3-642-27994-2_21.

44. Lee SW, Shim SR, Jeong SY et al. Comparison of 5 different PET radiopharmaceuticals for the detection of recurrent medullary thyroid carcinoma: a network meta-analysis. Clin Nucl Med 2020; 45 (5): 341–348. doi: 10.1097/RLU.0000000000002940.

45. Taieb D, Castinetti F. PET imaging in medullary thyroid carcinoma: time for reappraisal? Thyroid 2020; 31 (2): 151–155. doi: 10.1089/thy.2020.0674.

46. Giovanella L, Treglia G, Iakovou I et al. EANM practice guideline for PET/CT imaging in medullary thyroid carcinoma. Eur J Nucl Med Mol Imaging 2020; 47 (1): 61–77. doi: 10.1007/s00259-019-04458-6.

47. Filetti S, Durante C, Hartl D et al. Thyroid cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-updagger. Ann Oncol 2019; 30 (12): 1856–1883. doi: 10.1093/annonc/mds230.

48. July M, Santhanam P, Giovanella L et al. Role of positron emission tomography imaging in multiple endocrine neoplasia syndromes. Clin Physiol Funct Imaging 2018; 38 (1): 4–9. doi: 10.1111/cpf.12391.

49. Albers MB, Librizzi D, Lopez CL et al. Limited value of Ga-68-DOTATOC-PET-CT in routine screening of patients with multiple endocrine neoplasia type 1. World J Surg 2017; 41 (6): 1521–1527. doi: 10.1007/s00268-017-3907-9.

50. Froeling V, Elgeti F, Maurer MH et al. Impact of Ga-68 DOTATOC PET/CT on the diagnosis and treatment of patients with multiple endocrine neoplasia. Ann Nucl Med 2012; 26 (9): 738–743. doi: 10.1007/s12149-012-0634-z.

51. Sharma P, Mukherjee A, Karunanithi S et al. Accuracy of 68Ga DOTANOC PET/CT imaging in patients with multiple endocrine neoplasia syndromes. Clin Nucl Med 2015; 40 (7): 351–356. doi: 10.1097/RLU.0000000000000775.

52. Patil VA, Goroshi MR, Shah H et al. Comparison of 68Ga-DOTA-NaI3-Octreotide/tyr3-octreotate positron emission tomography/computed tomography and contrast-enhanced computed tomography in localization of tumors in multiple endocrine neoplasia 1 syndrome. World J Nucl Med 2020; 19 (2): 99–105. doi: 10.4103/wjnm.WJNM_24_19.

53. Tuzcu SA, Pekkolay Z. Multiple endocrine neoplasia type 2A syndrome (MEN2A) and usefulness of 68Ga-DOTATATE PET/CT in this syndrome. Ann Ital Chir 2019; 90: 497–503.

54. Debono M, Newell-Price JD. Cushing’s syndrome: where and how to find it. Front Horm Res 2016; 46: 15–27. doi: 10.1159/000443861.

55. Young J, Haissaguerre M, Viera-Pinto O et al. MANAGEMENT OF ENDOCRINE DISEASE: Cushing’s syndrome due to ectopic ACTH secretion: an expert operational opinion. Eur J Endocrinol 2020; 182 (4): 29–58. doi: 10.1530/EJE-19-0877.

56. Wannachalee T, Turcu AF, Bancos I et al. The clinical impact of [68Ga]-DOTATATE PET/CT for the diagnosis and management of ectopic adrenocorticotropic hormone – secreting tumours. Clin Endocrinol (Oxf) 2019; 91 (2): 288–294. doi: 10.1111/cen.14008.

57. Varlamov E, Hinojosa-Amaya JM, Stack M et al. Diagnostic utility of Gallium-68-somatostatin receptor PET/CT in ectopic ACTH-secreting tumors: a systematic literature review and single-center clinical experience. Pituitary 2019; 22 (5): 445–455. doi: 10.1007/s11102-019-00 972-w.

58. Belissant Benesty O, Nataf V, Ohnona J et al. 68Ga-DOTATOC PET/CT in detecting neuroendocrine tumours responsible for initial or recurrent paraneoplastic Cushing’s syndrome. Endocrine 2020; 67 (3): 708–717. doi: 10.1007/s12020-019-02098-2.

59. de Bruin C, Feelders RA, Waaijers AM et al. Differential regulation of human dopamine D2 and somatostatin receptor subtype expression by glucocorticoids in vitro. J Mol Endocrinol 2009; 42 (1): 47–56. doi: 10.1677/JME-08-0110.

60. NCCN Guidelines Version 3.2020 Central Nervous System Cancers [online]. Available from: https: //www.nccn.org/professionals/physician_gls/pdf/cns_blocks.pdf.

61. Bashir A, Vestergaard MB, Binderup T et al. Pharmacokinetic analysis of [68Ga]Ga-DOTA-TOC PET in meningiomas for assessment of in vivo somatostatin receptor subtype 2. Eur J Nucl Med Mol Imaging 2020; 47 (11): 2577–2588. doi: 10.1007/s00259-020-04759-1.

62. Rachinger W, Stoecklein VM, Terpolilli NA et al. Increased 68Ga-DOTATATE uptake in PET imaging discriminates meningioma and tumor-free tissue. J Nucl Med. 2015; 56 (3): 347–353. doi: 10.2967/jnumed.114.149120.

63. Afshar-Oromieh A, Giesel FL, Linhart HG et al. Detection of cranial meningiomas: comparison of 68Ga-DOTATOC PET/CT and contrast-enhanced MRI. Eur J Nucl Med Mol Imaging 2012; 39 (9): 1409–1415. doi: 10.1007/s00259-012-2155-3.

64. Kunz WG, Jungblut LM, Kazmierczak PM et al. Improved detection of transosseous meningiomas using 68Ga-DOTATATE PET/CT compared with contrast-enhanced MRI. J Nucl Med 2017; 58 (10): 1580–1587. doi: 10.2967/jnumed.117.191932.

65. Combs SE, Welzel T, Habermehl D et al. Prospective evaluation of early treatment outcome in patients with meningiomas treated with particle therapy based on target volume definition with MRI and 68Ga-DOTATOC-PET. Acta Oncol 2013; 52 (3): 514–520. doi: 10.3109/0284186X.2013.762996.

66. Zollner B, Ganswindt U, Maihofer C et al. Recurrence pattern analysis after [68Ga]-DOTATATE-PET/CT-planned radiotherapy of high-grade meningiomas. Radiat Oncol 2018; 13 (1): 110. doi: 10.1186/s13014-018-1056-4.

67. Stade F, Dittmar JO, Jakel O et al. Influence of 68Ga-DOTATOC on sparing of normal tissue for radiation therapy of skull base meningioma: differential impact of photon and proton radiotherapy. Radiat Oncol 2018; 13 (1): 58. doi: 10.1186/s13014-018-1008-z.

68. Milker-Zabel S, Zabel-du Bois A, Henze M et al. Improved target volume definition for fractionated stereotactic radiotherapy in patients with intracranial meningiomas by correlation of CT, MRI, and [68Ga]-DOTATOC-PET. Int J Radiat Oncol Biol Phys 2006; 65 (1): 222–227. doi: 10.1016/j.ijrobp.2005.12.006.

69. Acker G, Kluge A, Lukas M et al. Impact of 68Ga-DOTATOC PET/MRI on robotic radiosurgery treatment planning in meningioma patients: first experiences in a single institution. Neurosurg Focus 2019; 46 (6): E9. doi: 10.3171/2019.3.FOCUS1925.

70. Ivanidze J, Roytman M, Lin E et al. Gallium-68 DOTATATE PET in the evaluation of intracranial meningiomas. J Neuroimaging 2019; 29 (5): 650–656. doi: 10.1111/jon.12632.

71. Galldiks N, Albert NL, Sommerauer M et al. PET imaging in patients with meningioma-report of the RANO/PET Group. Neuro Oncol 2017; 19 (12): 1576–1587. doi: 10.1093/neuonc/nox112.

72. Pelak MJ, d’Amico A. The prognostic value of pretreatment gallium-68 DOTATATE Positron emission tomography/computed tomography in irradiated non-benign meningioma. Indian J Nucl Med 2019; 34 (4): 278–283. doi: 10.4103/ijnm.IJNM_98_19.

73. Ueberschaer M, Vettermann FJ, Forbrig R et al. Simpson grade revisited – intraoperative estimation of the extent of resection in meningiomas versus postoperative somatostatin receptor positron emission tomography/computed tomography and magnetic resonance imaging. Neurosurgery 2020; 88 (1): 140–146. doi: 10.1093/neuros/nyaa333.

74. Slot KM, Verbaan D, Buis DR et al. Prediction of meningioma WHO grade using PET findings: a systematic review and meta-analysis. J Neuroimaging 2020; 31 (1): 6–19. doi: 10.1111/jon.12795.

75. Mirian C, Duun-Henriksen AK, Maier AD et al. Somatostatin receptor-targeted radiopeptide therapy in treatment-refractory meningioma: an individual patient data meta-analysis. J Nucl Med 2021; 62 (4): 507–513. doi: 10.2967/jnumed.120.249607.

Labels
Paediatric clinical oncology Surgery Clinical oncology

Article was published in

Clinical Oncology

Issue 4

2021 Issue 4

Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#