Remnantní cholesterol: fakt nebo fikce?
Úvaha nad problematikou tzv. remnantního cholesterolu
:
Vladimír Soška 1,2
:
Oddělení klinické biochemie FN U sv. Anny v Brně
1; II. interní klinika, Katedra laboratorních metod, LF MU, Brno
2
:
AtheroRev 2017; 2(2): 118-121
:
reviews
Remnantní cholesterol je cholesterol obsažený v remnantních (zbytkových) částicích bohatých triglyceridy, kterými jsou jednak remnanta chylomiker, jednak remnanta VLDL, tedy IDL (lipoproteiny o střední hustotě). Termín remnantní cholesterol je však nyní často používán pro cholesterol obsažený v lipoproteinech o velmi nízké hustotě – VLDL, které nejsou částicemi remnantními (jsou syntetizovány v hepatocytech). To vede k nejasnostem a nepochopení nejen toho, co to remnantní cholesterol vlastně je, ale také jak jej můžeme změřit či vypočíst a jaký je jeho vztah ke kardiovaskulárním onemocněním.
Kľúčové slová/Klíčová slova:
cholesterol, remnantní cholesterol, triglyceridy, VLDL
Úvod
V několika posledních letech se můžeme v odborné literatuře i přednáškách častěji setkávat s pojmem remnantní cholesterol (R-C) [1–3]. Je proto na místě se zamyslet nad tím, co vlastně tento pojem z hlediska odborné terminologie znamená a jaký je jeho význam či postavení v současné lipidologii a preventivní kardiologii. Položme si proto na několik základních otázek s tímto termínem spojených:
- Co je to „remnantní cholesterol“?
- Jak můžeme získat hodnotu (koncentraci) R-C v krvi?
- Jaká je fyziologická či „optimální“ koncentrace R-C?
- Lze hladinu R-C v krvi cíleně ovlivnit (farmakologicky či nefarmakologicky)?
- Má sledování hladiny R-C v krvi klinický význam?
Co rozumíme pojmem „remnantní cholesterol“?
„Remnantní cholesterol“ je z hlediska odborné terminologie cholesterolem (C), neseným (či obsaženým) v „remnantních lipoproteinech“. Anglické slovo „remnants“ znamená v češtině „zbytky“. Remnantní lipoproteiny jsou tedy „zbytky“ z lipoproteinů, které jsou někde v těle syntetizovány „de novo“ a následně jsou v krvi metabolizovány (degradovány) na tyto „zbytky“, neboli „zbytkové“ (remnantní) částice. O jaké lipoproteiny tedy konkrétně jde?
Lipoproteiny syntetizovanými „de novo“ jsou jednak chylomikra (CL), syntetizované v enterocytech, a dále lipoproteiny o velmi nízké hustotě (very low-density lipoprotein – VLDL), syntetizované v hepatocytech. Metabolizmus chylomiker a VLDL v krvi je v prvním kroku velmi podobný: v krevních kapilárách tukové a svalové tkáně jsou z nich účinkem lipoproteinové lipázy, navázané na endotelu krevních kapilár, odštěpovány mastné kyseliny nesené v triglyceridech (TG). CL i VLDL jsou tak ochuzovány o triglyceridy (cholesterol v nich zůstává) a částice se zmenšují. K jejich dalšímu ochuzování o TG a současně obohacování o esterifikovaný cholesterol přispívá cholesterol-ester transfer protein (CETP), který přenáší esterifikovaný cholesterol z částic HDL do VLDL a chylomiker a zpět do HDL přenáší triglyceridy. Výsledkem těchto procesů je vznik remnantních částic: chylomikronových remnant (CL-R) a VLDL remnant – IDL (lipoproteiny o střední hustotě – intermediate density lipoprotein).
CL-R již dále v krvi metabolizovány nejsou a jsou vychytávány v hepatocytech. IDL mohou být buď také vychytávány hepatocyty, nebo je z nich po průtoku játry odštěpena účinkem jaterní lipázy většina zbývajících triglyceridů a vzniká tak z nich částce LDL (lipoproteiny o nízké hustotě – low density lipoprotein). Z hlediska metabolických procesů jsou tedy také LDL částice remnantní, protože jsou to „zbytky“ VLDL a IDL. R-C je tedy (při respektování fyziologie lipoproteinů) cholesterol nesený v CL-R, IDL a LDL. Z hlediska historického (a také praktického) jsou ale LDL považovány za samostatnou kategorii a zařazovat je mezi remnantní částice by proto bylo matoucí. Akceptujeme-li tento fakt a LDL nebudeme zahrnovat mezi remnantní částice, neměli bychom již z hlediska odborné terminologie hovořit o R-C, ale o cholesterolu neseném v remnantních částicích bohatých triglyceridy (CL-R, IDL). Z historického a praktického hlediska ale bude v dalším textu tohoto článku jako R-C nazýván součet cholesterolu obsaženého jen v CL-R a v IDL [4–6].
Řada autorů odborných publikací i přednášek ale začala zahrnovat do R-C také cholesterol nesený v lipoproteinech VLDL (VLDL-C), a dokonce i cholesterol nesený v chylomikrech (CL-C) [2,3,7,8], tedy v lipoproteinech, které nejsou částicemi remnantními. Důvod, proč jsou lipoproteiny VLDL nově syntetizované v játrech a také CL, nově syntetizované v enterocytech, zahrnuty mezi remnantní částice, ale není vysvětlen. Dochází tak ke směšování (či záměně) pojmu „remnantní cholesterol“ a pojmu „cholesterol nesený v lipoproteinech bohatých triglyceridy“. Remnantní lipoproteiny jsou CL-R a IDL, lipoproteiny bohaté TG jsou CL, CL-R, VLDL a IDL. Je tedy zřejmé, že existuje zmatek v již tak základní otázce „co je to R-C“, a tak autoři různých publikaci či přednášek tím mohou myslet něco jiného.
Jak můžeme získat informaci o hladině (koncentraci) R-C v krvi?
Ke změření koncentrace skutečného R-C jsou vhodné separační techniky, které dokáží v prvním kroku separovat částice CL-R a IDL a poté je v nich chemickými postupy změřena koncentrace cholesterolu [4,9,10]. Součtem obou položek pak bude R-C. K takovémuto postupu lze použít např. metodu ultracentrifugace nebo některou z chromatografických technik. Ty jsou ale nevhodné pro rutinní stanovení v běžné klinické laboratoři, protože jsou náročně na čas, práci a přístrojové vybavení. Vyvinuty jsou již ale i soupravy na „přímé“ měření R-C (především cholesterolu v CL-R), jejichž výsledky dobře korelují s výsledky získanými separačními technikami [5,9].
Naproti tomu se v řadě recentních článků dočítáme, že koncentraci R-C získáme velmi snadno tak, že od koncentrace celkového cholesterolu (T-C) odečteme LDL-C a HDL-C [1–3,7], tedy:
R-C = (T-C) – (LDL-C) – (HDL-C)
Konstrukce tohoto výpočtu je velmi sporná, protože jeho výsledek nutně zahrnuje (kromě R-C) také cholesterol nesený v chylomikrech (CL-C) a v lipoproteinech VLDL (VLDL-C). Ani když je odběr krve nalačno a krev není chylózní (a tedy nejsou přítomna CL), vypočtená hodnota nevypovídá o koncentraci R-C, ale je součtem cholesterolu neseného v CL-R, IDL a VLDL. Přitom koncentrace VLDL-C bývá mnohonásobně vyšší než koncentrace cholesterolu v CL-R a v IDL. Budeme-li předpokládat, že nejsou v krvi ani CL-R a že počet částic IDL je za fyziologických okolností velmi malý, získáme výpočtem koncentraci pouze VLDL-C. Protože VLDL nejsou remnantní částice, nezískali jsme žádnou informaci o R-C, ale pouze o cholesterolu neseném ve VLDL (VLDL-C), tedy v částicích sice bohatých TG, nikoliv však částicích remnantních.
O tom, že tento výpočet nelze použít ke zjištění koncentrace R-C, se přesvědčíme i tak, že do výpočtu dosadíme za LDL-cholesterol jeho výpočet podle Friedewalda:
Výchozí rovnice pro výpočet údajného R-C je:
R-C = (T-C) – (LDL-C) – (HDL-C)
Za LDL-C dosadíme vzorec pro výpočet LDL-C dle Friedewala:
R-C = (T-C) – [(T-C) – (HDL-C) – (TG : 2,2)] – (HDL-C)
Nyní odstraníme hranatou závorku na pravé straně rovnice, takže se u členů v závorce musí změnit znaménka:
R-C = (T-C) – (T-C) + (HDL-C) + (TG : 2,2) – (HDL-C)
Následuje úprava pravé strany rovnice, kdy rozdíl (T-C) – (T-C) = 0, a stejně tak i rozdíl (HDL-C) – (HDL-C) = 0. Výsledkem je tedy rovnice:
R-C = TG : 2,2
Jinými slovy, stačí vzít koncentraci TG, vydělit ji číslem 2,2, a máme koncentraci R-C!? Kupodivu i recentní práce, která se tomuto tématu věnuje, uvádí, že R-C lze získat vydělením TG číslem 2,2 [3]. Toto tvrzení ale nerespektuje základní fakta o složení jednotlivých tříd lipoproteinů – ty mají odlišné zastoupení cholesterolu a triglyceridů a pro každou třídu lipoproteinů by musel být použit jiný dělitel v podílu TG : ? Toto nesprávné zjednodušení nerespektuje ani to, co již řadu desetiletí bereme jako samozřejmost – známé limitace použití Friedewaldovy rovnice pro výpočet LDL-C [11]:
Friedewaldova rovnice je založena na skutečnosti, že nalačno za fyziologických okolností nejsou v krvi CL, CL-R, a koncentrace IDL je zanedbatelná. Celkový cholesterol (total cholesterol – T-C) je v tomto případě součtem cholesterolu neseného v lipoproteinech VLDL, LDL a HDL. Koncentraci LDL-C tedy vypočteme tak, že od T-C odečteme HDL-C a VLDL-C. Protože koncentraci VLDL-C běžně změřit nelze, je v rovnici místo VLDL-C použit podíl TG : 2,2. Podkladem této substituce je skutečnost, že ve VLDL je za fyziologických okolností poměr molárních koncentrací TG : C roven přibližně 2,2 : 1 (v mg/dl je to poměr 5 : 1). Vydělením koncentrace TG číslem 2,2 získáme tedy koncentraci VLDL-C.
Všichni přitom respektují, že výpočet LDL-C podle Friedewalda nelze použít, pokud je sérum chylózní (jsou přítomny CL, CL-R), nebo má-li pacient dysbetalipoproteinemii (zvýšení frakce IDL), protože v těchto lipoproteinech je jiný poměr mezi koncentrací TG a C. Stejně tak nelze LDL-C vypočíst pomocí Friedewaldovy rovnice, má-li pacient TG > 4,5 mmol/l, protože bývají přítomny velké a na triglyceridy velmi bohaté VLDL, opět s nefyziologickým zastoupením (poměrem) C a TG. Z výše uvedeného vyplývá, že zlomek TG : 2,2 nelze použít pro výpočet R-C, ale pouze pro výpočet cholesterolu v lipoproteinech VLDL (VLDL ale nejsou remnantní částice). Pro každý typ lipoproteinů (CL, CL-R, IDL) by totiž muselo být jako dělitel jiné číslo v závislosti na tom, jaký je v tom kterém typu lipoproteinů poměr mezi C a TG. Jestliže všichni respektují limitace použití Friedewaldovy rovnice, je s podivem, že nerespektují stejné limitace pro výpočet tzv. R-C.
Pokud pacient nemá v séru CL ani CL-R a nemá ani dysbetalipoproteinémii, získáme vydělením koncentrace TG číslem 2,2 hodnotu VLDL-C. Vypočítávat podíl TG : 2,2 ale nemá smysl, protože je to duplicitní údaj k informaci o koncentraci TG. Jsou-li zvýšené TG, je zvýšený i poměr TG : 2,2 a jedná se tedy o informaci bez přidané hodnoty. Budou-li např. 2krát zvýšené TG, bude i 2krát zvýšený poměr TG . 2,2 (tedy VLDL-C) a nic nového jsme se nedozvěděli. To stejné platí, i když je LDL-C přímo měřený, protože při použití výpočtu
R-C = (T-C) – (LDL-C) – (HDL-C)
je výsledkem v praxi opět VLDL-C, nikoliv R-C.
Jaká je fyziologická či „optimální“ koncentrace R-C?
Podle recentní práce [3] je jeho optimální hodnota do 0,8 mmol/l (30 mg/dl) na lačno a do 0,9 mmol/l (35 mg/dl) bez lačnění. V této práci ale autoři vypočetli koncentraci R-C podle již výše uvedeného vzorce R-C = (T-C) – (LDL-C) – (HDL-C), tedy jako TG : 2,2. Bylo by ale korektní vůči čtenářům uvedené práce říci, že byl vypočten VLDL-C, nikoliv R-C (byl-li pacient nalačno). Pokud byl pacient v postprandiálním stavu a byly tedy přítomny CL a CL-R, pak vzorec nebylo možné použít vůbec (v CL a CL-R není poměr TG a C 2,2 : 1) a není jasné, co bylo vypočteno. O tom, jaké jsou koncentrace skutečně změřeného R-C v krvi, se můžeme dočíst v řadě jiných vědeckých publikací, např. [4,6,12], v nichž byla měřena koncentrace R-C separačními technikami nebo speciálními diagnostickými soupravami. Fyziologická hodnota takto naměřené koncentrace R-C (cholesterolu v CL-R a IDL) je do asi 0,1 mmol/l (5 mg/dl). Porovnání nesprávného výpočtu a přímého měření pak prokazuje, jak odlišné výsledky oběma postupy získáme [13].
Jen jako doklad naprosté zbytečnosti vypočítávat R-C jako TG : 2,2 svědčí i ony „optimální“ hodnoty R-C do 0,8 mmol/l [3]: vynásobíme-li zpětně 0,8 × 2,2, získáme výsledek 1,76 mmol/l, tedy dostali jsme se zpět k optimální koncentraci TG. Jinými slovy zhodnocení koncentrace TG nám dá totožnou informaci, jako zhodnocení podílu TG : 2,2 (tedy tzv. R-C, ve skutečnosti ale VLDL-C). Takto vypočtený zvýšený R-C má stejnou výpovědní hodnotu jako zvýšená koncentrace TG a bude mít také stejný vztah (korelaci) k riziku kardiovaskulárních onemocnění. Jde tedy jen o hru s čísly, i když pro autory tohoto „výpočtu“ je to jistě zajímavý námět na další publikace v impaktovaných časopisech, v nichž místo TG bude figurovat nový pojem „remnantní cholesterol“.
Lze hladinu R-C v krvi cíleně ovlivnit (farmakologicky či nefarmakologicky)?
Statiny jako základní léky v léčbě hypercholesterolemie snižují především LDL-cholesterol, podobně je tomu i u ezetimibu. U obou uvedených skupin léků byl ale prokázán i jejich účinek na snížení R-C (je tím myšlen skutečný R-C, nesený nejčastěji v CL-R) [14,15]. R-C pak mohou významně snížit léky, které snižují hladinu TG. Snížení koncentrace TG je odrazem snížení koncentrace lipoproteinů bohatých TG (CL, CL-R, VLDL, IDL). A není z tohoto pohledu důležité, zda je toho dosaženo snížením produkce CL (v enterocytech) a VLDL (v hepatocytech), nebo urychlením jejich clearence (degradace) v krvi na částice remnantní, nebo urychlením vychytávání remnant v hepatocytech (a v případě IDL i urychlením jejich degradace na LDL). Z tohoto pohledu se tedy snižování R-C rovná snižování hladiny TG a účinnými léky tak mohou být agonisté jaderných receptorům PPAR alfa, např. fenofibrát [16,17]. Snížení R-C je také prokázáno při léčbě inhibitory PCSK9. Pro snížení koncentrace R-C ale budou, stejně tak jako pro snížení TG, rozhodující nefarmakologická opatření (změny životního stylu, stravování, úprava váhy, atd).
Má sledování hladiny R-C v krvi klinický význam?
Sledování koncentrace skutečného R-C (neseného v CL-R, ev. IDL) by mohlo mít význam u pacientů, kteří mají zpomalenou clearence CL-R nebo IDL, protože tyto lipoproteiny mají silný aterogenní potenciál: typické je to u pacientů s dysbetalipoproteinemií, kteří mají zvýšenou koncentraci IDL, a tím i vysoké kardiovaskulární riziko [4]. Prokázán je i zvýšený aterogenní potenciál CL-R [4,12]. V citovaných pracích šlo o skutečný R-C nesený v CL-R nebo IDL. Posuzování vlivu vypočteného „remnantního“ cholesterolu (podílu TG : 2,2) na KV-riziko je ale jen opakováním již publikovaných prací prokazujících vliv TG na KV-riziko, a to bez jakékoliv přidané hodnoty. Zvýšení TG i zvýšení vypočteného „remnantního“ cholesterolu (podílu TG : 2,2) nás totiž informuje o tom stejném, tedy o koncentraci VLDL-C. Tak jako je nezávislým rizikovým faktorem KV-onemocnění zvýšená koncentrace TG, musí jím být i poměr TG : 2,2, tedy VLDL-C. Posouzení koncentrace TG je ale jistě rychlejší a jednodušší.
Základním cílem v léčbě pacientů s DLP zůstává LDL-C a základními léky zůstávají statiny. Ty mohou být k dosažení cílového LDL-C kombinovány s ezetimibem, a snad brzy i s inhibitory PCSK9. A protože TG nejsou cílem léčby, nemůže být cílem léčby ani vypočtený „remnantní“ cholesterol (= poměr TG : 2,2), ve skutečnosti ale cholesterol nesený ve VLDL. U pacientů léčených statiny, kteří dosáhli cílového LDL-C a u kterých zůstává zvýšené hladina TG, má být zváženo přidání fenofibrátu. Takováto kombinace snižuje dále koncentraci TG, tedy primárně lipoproteinů bohatých TG (VLDL i remnantních částic CL-R a IDL) [17,18].
Závěr
Zavádět pojem „remnantní cholesterol“ do klinické či laboratorní praxe považuji v současnosti za zbytečné z následujících důvodů:
- chybí konsenzus v tom, co to vlastně remnantní cholesterol je (které lipoproteiny zahrnuje)
- chybí konsenzus v tom, jakým postupem lze získat relevantní informaci o jeho koncentraci v krvi
- jeho koncentrace získaná výpočtem TG : 2,2 (nebo TC – HDL-C – LDL-C, což je totéž) nemá žádnou přídatnou hodnotu oproti změření hladiny triglyceridů (výsledkem není R-C, ale VLDL-C)
- chybí konsenzus v tom, jaká je jeho fyziologická koncentrace a zda může být cílem léčby
- chybí konsenzus v tom, jak a čím jeho koncentraci snižovat.
Doručené do redakcie/Doručeno do redakce/Received 4. 5. 2017
Prijaté po recenzii/Přijato po recenzi/Accepted: 19. 5. 2017
prof. MUDr. Vladimír Soška, CSc.
vladimir.soska@fnusa.cz
www.fnusa.cz
Sources
1. Nordestgaard BG, Varbo A. Triglycerides and cardiovascular disease. Lancet 2014; 384(9943): 626–635. Dostupné z DOI: <http://dx.doi.org/10.1016/S0140–6736(14)61177–6>.
2. Varbo A, Benn M, Nordestgaard BG. Remnant cholesterol as a cause of ischemic heart disease: evidence, definition, measurement, atherogenicity, high risk patients, and present and future treatment. Pharmacol Ther 2014; 141(3): 358–367. Dostupné z DOI: <http://dx.doi.org/10.1016/j.pharmthera.2013.11.008>.
3. Nordestgaard BG, Langsted A, Mora S et al. Fasting is not routinely required for determination of a lipid profile: clinical and laboratory implications including flagging at desirable concentration cut-points-a joint consensus statement from the European Atherosclerosis Society and European Federation of Clinical Chemistry and Laboratory Medicine. Eur Heart J 2016; 37(25): 1944–1958. Dostupné z DOI: <http://dx.doi.org/10.1093/eurheartj/ehw152>.
4. Masuda D, Yamashita S. Postprandial Hyperlipidemia and Remnant Lipoproteins. J Atheroscler Thromb 2017; 24(2): 95–109. Dostupné z DOI: <http://dx.doi.org/10.5551/jat.RV16003>.
5. Taguchi M, Ishigami M, Nishida M et al. Remnant lipoprotein-cholesterol is a predictive biomarker for large artery atherosclerosis in apparently healthy women: usefulness as a parameter for annual health examinations. Ann Clin Biochem 2011; 48(Pt 4): 332–337. Dostupné z DOI: <http://dx.doi.org/10.1258/acb.2011.010244>.
6. Nguyen SV, Nakamura T, Uematsu M et al. Remnant lipoproteinemia predicts cardiovascular events in patients with type 2 diabetes and chronic kidney disease. J Cardiol 2017; 69(3): 529–535. Dostupné z DOI: <http://dx.doi.org/10.1016/j.jjcc.2016.04.011>.
7. Varbo A, Benn M, Tybjaerg-Hansen A et al. Remnant cholesterol as a causal risk factor for ischemic heart disease. J Am Coll Cardiol 2013; 61(4): 427–436. Dostupné z DOI: <http://dx.doi.org/10.1016/j.jacc.2012.08.1026>.
8. Langsted A, Freiberg JJ, Nordestgaard BG. Fasting and nonfasting lipid levels: influence of normal food intake on lipids, lipoproteins, apolipoproteins, and cardiovascular risk prediction. Circulation 2008; 118(20): 2047–2056. Dostupné z DOI: <http://doi: 10.1161/CIRCULATIONAHA.108.804146>.
9. Yoshida H, Kurosawa H, Hirowatari Y et al. Characteristic comparison of triglyceride-rich remnant lipoprotein measurement between a new homogenous assay (RemL-C) and a conventional immunoseparation method (RLP-C). Lipids Health Dis 2008; 7: 18. Dostupné z DOI: <http://dx.doi.org/10.1186/1476–511X-7–18>.
10. Kurosawa H, Doumitu K, Kobayashi M et al. [Relevance of lipoprotein cholesterol levels measured by HPLC method to appearance midband on electrophoresis and remnant-like particle (RLP)-cholesterol levels]. Rinsho Byori 2004; 52(9): 737–741.
11. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 1972; 18(6): 499–502.
12. Nakamura T, Takano H, Umetani K et al. Remnant lipoproteinemia is a risk factor for endothelial vasomotor dysfunction and coronary artery disease in metabolic syndrome. Atherosclerosis 2005; 181(2): 321–327.
13. Jepsen AM, Langsted A, Varbo A et al. Increased Remnant Cholesterol Explains Part of Residual Risk of All-Cause Mortality in 5414 Patients with Ischemic Heart Disease. Clin Chem 2016; 62(4): 593–604. Dostupné z DOI: <http://dx.doi.org/10.1373/clinchem.2015.253757>.
14. Nakamura T, Hirano M, Kitta Y et al. A comparison of the efficacy of combined ezetimibe and statin therapy with doubling of statin dose in patients with remnant lipoproteinemia on previous statin therapy. J Cardiol 2012; 60((1): 12–17. Dostupné z DOI: <http://dx.doi.org/10.1016/j.jjcc.2012.02.005>.
15. Chan DC, Watts GF, Barrett PH et al. Effect of atorvastatin on chylomicron remnant metabolism in visceral obesity: a study employing a new stable isotope breath test. J Lipid Res 2002; 43(5): 706–712.
16. Westphal S, Wiens L, Guttler K et al. Chylomicron remnants of various sizes are lowered more effectively by fenofibrate than by atorvastatin in patients with combined hyperlipidemia. Atherosclerosis 2003; 171(2): 369–377.
17. Ooi TC, Cousins M, Ooi DS et al. Effect of fibrates on postprandial remnant-like particles in patients with combined hyperlipidemia. Atherosclerosis 2004; 172(2): 375–382.
18. Westphal S, Orth M, Ambrosch A et al. Postprandial chylomicrons and VLDLs in severe hypertriacylglycerolemia are lowered more effectively than are chylomicron remnants after treatment with n-3 fatty acids. Am J Clin Nutr 2000; 71(4): 914–920.
Labels
Angiology Diabetology Internal medicine Cardiology General practitioner for adultsArticle was published in
Athero Review
2017 Issue 2
Most read in this issue
- What is the role of nutriceuticals in dyslipidemia management? Armolipid Plus
- Combination treatment with antihypertensive and hypolipidemic drugs
-
Remnant cholesterol: a fact or fiction?
Reflection on the problems related to remnant cholesterol - Changes in the lipid spectrum in endocrinopathies