#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Identification of the critical replication targets of CDK reveals direct regulation of replication initiation factors by the embryo polarity machinery in C. elegans


Autoři: Vincent Gaggioli aff001;  Manuela R. Kieninger aff001;  Anna Klucnika aff001;  Richard Butler aff001;  Philip Zegerman aff001
Působiště autorů: Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Cambridge, United Kingdom aff001;  Department of Genetics, University of Cambridge, United Kingdom aff002;  Department of Biochemistry, University of Cambridge, United Kingdom aff003
Vyšlo v časopise: Identification of the critical replication targets of CDK reveals direct regulation of replication initiation factors by the embryo polarity machinery in C. elegans. PLoS Genet 16(12): e1008948. doi:10.1371/journal.pgen.1008948
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pgen.1008948

Souhrn

During metazoan development, the cell cycle is remodelled to coordinate proliferation with differentiation. Developmental cues cause dramatic changes in the number and timing of replication initiation events, but the mechanisms and physiological importance of such changes are poorly understood. Cyclin-dependent kinases (CDKs) are important for regulating S-phase length in many metazoa, and here we show in the nematode Caenorhabditis elegans that an essential function of CDKs during early embryogenesis is to regulate the interactions between three replication initiation factors SLD-3, SLD-2 and MUS-101 (Dpb11/TopBP1). Mutations that bypass the requirement for CDKs to generate interactions between these factors is partly sufficient for viability in the absence of Cyclin E, demonstrating that this is a critical embryonic function of this Cyclin. Both SLD-2 and SLD-3 are asymmetrically localised in the early embryo and the levels of these proteins inversely correlate with S-phase length. We also show that SLD-2 asymmetry is determined by direct interaction with the polarity protein PKC-3. This study explains an essential function of CDKs for replication initiation in a metazoan and provides the first direct molecular mechanism through which polarization of the embryo is coordinated with DNA replication initiation factors.

Klíčová slova:

Caenorhabditis elegans – Cell cycle and cell division – Cell polarity – Cyclins – DNA replication – Phosphorylation – RNA interference – Synthesis phase


Zdroje

1. Nordman J, Orr-Weaver TL. Regulation of DNA replication during development. Development. 2012;139(3):455–64. doi: 10.1242/dev.061838 22223677; PubMed Central PMCID: PMC3252349.

2. Tavernier N, Labbe JC, Pintard L. Cell cycle timing regulation during asynchronous divisions of the early C. elegans embryo. Experimental cell research. 2015;337(2):243–8. doi: 10.1016/j.yexcr.2015.07.022 26213213.

3. Edgar LG, McGhee JD. DNA synthesis and the control of embryonic gene expression in C. elegans. Cell. 1988;53(4):589–99. doi: 10.1016/0092-8674(88)90575-2 3131016.

4. Rivers DM, Moreno S, Abraham M, Ahringer J. PAR proteins direct asymmetry of the cell cycle regulators Polo-like kinase and Cdc25. The Journal of cell biology. 2008;180(5):877–85. doi: 10.1083/jcb.200710018 18316412; PubMed Central PMCID: PMC2265398.

5. Budirahardja Y, Gonczy P. PLK-1 asymmetry contributes to asynchronous cell division of C. elegans embryos. Development. 2008;135(7):1303–13. doi: 10.1242/dev.019075 18305005.

6. Michael WM. Cyclin CYB-3 controls both S-phase and mitosis and is asymmetrically distributed in the early C. elegans embryo. Development. 2016;143(17):3119–27. doi: 10.1242/dev.141226 27578178; PubMed Central PMCID: PMC5047676.

7. Labib K. How do Cdc7 and cyclin-dependent kinases trigger the initiation of chromosome replication in eukaryotic cells? Genes & development. 2010;24(12):1208–19. doi: 10.1101/gad.1933010 20551170; PubMed Central PMCID: PMC2885657.

8. Zegerman P, Diffley JF. Phosphorylation of Sld2 and Sld3 by cyclin-dependent kinases promotes DNA replication in budding yeast. Nature. 2007;445(7125):281–5. doi: 10.1038/nature05432 17167417.

9. Tanaka S, Umemori T, Hirai K, Muramatsu S, Kamimura Y, Araki H. CDK-dependent phosphorylation of Sld2 and Sld3 initiates DNA replication in budding yeast. Nature. 2007;445(7125):328–32. doi: 10.1038/nature05465 17167415.

10. Bell SP, Labib K. Chromosome Duplication in Saccharomyces cerevisiae. Genetics. 2016;203(3):1027–67. doi: 10.1534/genetics.115.186452 27384026; PubMed Central PMCID: PMC4937469.

11. Mantiero D, Mackenzie A, Donaldson A, Zegerman P. Limiting replication initiation factors execute the temporal programme of origin firing in budding yeast. The EMBO journal. 2011;30(23):4805–14. doi: 10.1038/emboj.2011.404 22081107; PubMed Central PMCID: PMC3243606.

12. Tanaka S, Nakato R, Katou Y, Shirahige K, Araki H. Origin association of Sld3, Sld7, and Cdc45 proteins is a key step for determination of origin-firing timing. Current biology: CB. 2011;21(24):2055–63. doi: 10.1016/j.cub.2011.11.038 22169533.

13. Collart C, Allen GE, Bradshaw CR, Smith JC, Zegerman P. Titration of four replication factors is essential for the Xenopus laevis midblastula transition. Science. 2013;341(6148):893–6. doi: 10.1126/science.1241530 23907533; PubMed Central PMCID: PMC3898016.

14. Farrell JA, Shermoen AW, Yuan K, O'Farrell PH. Embryonic onset of late replication requires Cdc25 down-regulation. Genes & development. 2012;26(7):714–25. doi: 10.1101/gad.186429.111 22431511; PubMed Central PMCID: PMC3323882.

15. Dalle Nogare DE, Pauerstein PT, Lane ME. G2 acquisition by transcription-independent mechanism at the zebrafish midblastula transition. Developmental biology. 2009;326(1):131–42. doi: 10.1016/j.ydbio.2008.11.002 19063878.

16. Collart C, Smith JC, Zegerman P. Chk1 Inhibition of the Replication Factor Drf1 Guarantees Cell-Cycle Elongation at the Xenopus laevis Mid-blastula Transition. Developmental cell. 2017;42(1):82–96 e3. doi: 10.1016/j.devcel.2017.06.010 28697335; PubMed Central PMCID: PMC5505860.

17. Zegerman P. Evolutionary conservation of the CDK targets in eukaryotic DNA replication initiation. Chromosoma. 2015;124(3):309–21. doi: 10.1007/s00412-014-0500-y 25575982.

18. Gaggioli V, Zeiser E, Rivers D, Bradshaw CR, Ahringer J, Zegerman P. CDK phosphorylation of SLD-2 is required for replication initiation and germline development in C. elegans. The Journal of cell biology. 2014;204(4):507–22. doi: 10.1083/jcb.201310083 24535824; PubMed Central PMCID: PMC3926958.

19. Itou H, Muramatsu S, Shirakihara Y, Araki H. Crystal structure of the homology domain of the eukaryotic DNA replication proteins Sld3/Treslin. Structure. 2014;22(9):1341–7. doi: 10.1016/j.str.2014.07.001 25126958.

20. Sanchez-Pulido L, Diffley JF, Ponting CP. Homology explains the functional similarities of Treslin/Ticrr and Sld3. Current biology: CB. 2010;20(12):R509–10. doi: 10.1016/j.cub.2010.05.021 20620901.

21. Boos D, Sanchez-Pulido L, Rappas M, Pearl LH, Oliver AW, Ponting CP, et al. Regulation of DNA replication through Sld3-Dpb11 interaction is conserved from yeast to humans. Current biology: CB. 2011;21(13):1152–7. doi: 10.1016/j.cub.2011.05.057 21700459.

22. Kumagai A, Shevchenko A, Shevchenko A, Dunphy WG. Treslin collaborates with TopBP1 in triggering the initiation of DNA replication. Cell. 2010;140(3):349–59. doi: 10.1016/j.cell.2009.12.049 20116089; PubMed Central PMCID: PMC2857569.

23. Kohler K, Sanchez-Pulido L, Hofer V, Marko A, Ponting CP, Snijders AP, et al. The Cdk8/19-cyclin C transcription regulator functions in genome replication through metazoan Sld7. PLoS biology. 2019;17(1):e2006767. doi: 10.1371/journal.pbio.2006767 30695077; PubMed Central PMCID: PMC6377148.

24. Encalada SE, Martin PR, Phillips JB, Lyczak R, Hamill DR, Swan KA, et al. DNA replication defects delay cell division and disrupt cell polarity in early Caenorhabditis elegans embryos. Developmental biology. 2000;228(2):225–38. doi: 10.1006/dbio.2000.9965 11112326.

25. Kumagai A, Shevchenko A, Shevchenko A, Dunphy WG. Direct regulation of Treslin by cyclin-dependent kinase is essential for the onset of DNA replication. The Journal of cell biology. 2011;193(6):995–1007. doi: 10.1083/jcb.201102003 21646402; PubMed Central PMCID: PMC3115804.

26. Rhoads TW, Prasad A, Kwiecien NW, Merrill AE, Zawack K, Westphall MS, et al. NeuCode Labeling in Nematodes: Proteomic and Phosphoproteomic Impact of Ascaroside Treatment in Caenorhabditis elegans. Mol Cell Proteomics. 2015;14(11):2922–35. Epub 2015/09/24. doi: 10.1074/mcp.M115.049684 26392051; PubMed Central PMCID: PMC4638036.

27. Frokjaer-Jensen C, Davis MW, Hopkins CE, Newman BJ, Thummel JM, Olesen SP, et al. Single-copy insertion of transgenes in Caenorhabditis elegans. Nature genetics. 2008;40(11):1375–83. doi: 10.1038/ng.248 18953339; PubMed Central PMCID: PMC2749959.

28. Sansam CG, Goins D, Siefert JC, Clowdus EA, Sansam CL. Cyclin-dependent kinase regulates the length of S phase through TICRR/TRESLIN phosphorylation. Genes & development. 2015;29(5):555–66. doi: 10.1101/gad.246827.114 25737283; PubMed Central PMCID: PMC4358407.

29. Jackson PK, Chevalier S, Philippe M, Kirschner MW. Early events in DNA replication require cyclin E and are blocked by p21CIP1. The Journal of cell biology. 1995;130(4):755–69. doi: 10.1083/jcb.130.4.755 7642695; PubMed Central PMCID: PMC2199964.

30. Knoblich JA, Sauer K, Jones L, Richardson H, Saint R, Lehner CF. Cyclin E controls S phase progression and its down-regulation during Drosophila embryogenesis is required for the arrest of cell proliferation. Cell. 1994;77(1):107–20. doi: 10.1016/0092-8674(94)90239-9 8156587.

31. Fay DS, Han M. Mutations in cye-1, a Caenorhabditis elegans cyclin E homolog, reveal coordination between cell-cycle control and vulval development. Development. 2000;127(18):4049–60. 10952902.

32. Sulston JE, Schierenberg E, White JG, Thomson JN. The embryonic cell lineage of the nematode Caenorhabditis elegans. Developmental biology. 1983;100(1):64–119. doi: 10.1016/0012-1606(83)90201-4 6684600.

33. Rodriguez J, Peglion F, Martin J, Hubatsch L, Reich J, Hirani N, et al. aPKC Cycles between Functionally Distinct PAR Protein Assemblies to Drive Cell Polarity. Developmental cell. 2017;42(4):400–15 e9. doi: 10.1016/j.devcel.2017.07.007 28781174; PubMed Central PMCID: PMC5563072.

34. Watts JL, Morton DG, Bestman J, Kemphues KJ. The C. elegans par-4 gene encodes a putative serine-threonine kinase required for establishing embryonic asymmetry. Development. 2000;127(7):1467–75. 10704392.

35. Hoege C, Hyman AA. Principles of PAR polarity in Caenorhabditis elegans embryos. Nature reviews Molecular cell biology. 2013;14(5):315–22. doi: 10.1038/nrm3558 23594951.

36. Cowan CR, Hyman AA. Cyclin E-Cdk2 temporally regulates centrosome assembly and establishment of polarity in Caenorhabditis elegans embryos. Nature cell biology. 2006;8(12):1441–7. doi: 10.1038/ncb1511 17115027.

37. Korzelius J, The I, Ruijtenberg S, Prinsen MB, Portegijs V, Middelkoop TC, et al. Caenorhabditis elegans cyclin D/CDK4 and cyclin E/CDK2 induce distinct cell cycle re-entry programs in differentiated muscle cells. PLoS genetics. 2011;7(11):e1002362. doi: 10.1371/journal.pgen.1002362 22102824; PubMed Central PMCID: PMC3213155.

38. Kermi C, Lo Furno E, Maiorano D. Regulation of DNA Replication in Early Embryonic Cleavages. Genes. 2017;8(1). doi: 10.3390/genes8010042 28106858; PubMed Central PMCID: PMC5295036.

39. Farrell JA, O'Farrell PH. From egg to gastrula: how the cell cycle is remodeled during the Drosophila mid-blastula transition. Annual review of genetics. 2014;48:269–94. doi: 10.1146/annurev-genet-111212-133531 25195504; PubMed Central PMCID: PMC4484755.

40. Brauchle M, Baumer K, Gonczy P. Differential activation of the DNA replication checkpoint contributes to asynchrony of cell division in C. elegans embryos. Current biology: CB. 2003;13(10):819–27. doi: 10.1016/s0960-9822(03)00295-1 12747829.

41. Benkemoun L, Descoteaux C, Chartier NT, Pintard L, Labbe JC. PAR-4/LKB1 regulates DNA replication during asynchronous division of the early C. elegans embryo. The Journal of cell biology. 2014;205(4):447–55. doi: 10.1083/jcb.201312029 24841566; PubMed Central PMCID: PMC4033775.

42. Shermoen AW, McCleland ML, O'Farrell PH. Developmental control of late replication and S phase length. Current biology: CB. 2010;20(23):2067–77. doi: 10.1016/j.cub.2010.10.021 21074439; PubMed Central PMCID: PMC3108027.

43. Seller CA, O'Farrell PH. Rif1 prolongs the embryonic S phase at the Drosophila mid-blastula transition. PLoS biology. 2018;16(5):e2005687. doi: 10.1371/journal.pbio.2005687 29746464; PubMed Central PMCID: PMC5963817.

44. Boos D, Ferreira P. Origin Firing Regulations to Control Genome Replication Timing. Genes. 2019;10(3). doi: 10.3390/genes10030199 30845782; PubMed Central PMCID: PMC6470937.

45. Cuenca AA, Schetter A, Aceto D, Kemphues K, Seydoux G. Polarization of the C. elegans zygote proceeds via distinct establishment and maintenance phases. Development. 2003;130(7):1255–65. doi: 10.1242/dev.00284 12588843; PubMed Central PMCID: PMC1761648.

46. Hung TJ, Kemphues KJ. PAR-6 is a conserved PDZ domain-containing protein that colocalizes with PAR-3 in Caenorhabditis elegans embryos. Development. 1999;126(1):127–35. 9834192.

47. Tabuse Y, Izumi Y, Piano F, Kemphues KJ, Miwa J, Ohno S. Atypical protein kinase C cooperates with PAR-3 to establish embryonic polarity in Caenorhabditis elegans. Development. 1998;125(18):3607–14. 9716526.

48. Newton AC. Protein kinase C as a tumor suppressor. Seminars in cancer biology. 2018;48:18–26. doi: 10.1016/j.semcancer.2017.04.017 28476658; PubMed Central PMCID: PMC5668200.

49. Watts JL, Etemad-Moghadam B, Guo S, Boyd L, Draper BW, Mello CC, et al. par-6, a gene involved in the establishment of asymmetry in early C. elegans embryos, mediates the asymmetric localization of PAR-3. Development. 1996;122(10):3133–40. 8898226.

50. Paix A, Folkmann A, Seydoux G. Precision genome editing using CRISPR-Cas9 and linear repair templates in C. elegans. Methods. 2017;121–122:86–93. Epub 2017/04/11. doi: 10.1016/j.ymeth.2017.03.023 28392263; PubMed Central PMCID: PMC6788293.


Článek vyšel v časopise

PLOS Genetics


2020 Číslo 12
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Svět praktické medicíny 3/2024 (znalostní test z časopisu)
nový kurz

Kardiologické projevy hypereozinofilií
Autoři: prof. MUDr. Petr Němec, Ph.D.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Aktuální možnosti diagnostiky a léčby litiáz
Autoři: MUDr. Tomáš Ürge, PhD.

Závislosti moderní doby – digitální závislosti a hypnotika
Autoři: MUDr. Vladimír Kmoch

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#