Biocompatibility of the human mesenchymal stem cells with bovine bone tissue at the cellular level in vitro
Autoři:
Trebuňová Marianna 1,2; Gromošová Sylvia 2; Bačenková Darina 2,3; Rosocha Ján 2,3; Živčák Jozef 1
Působiště autorů:
Department of Biomedical Engineering and Measurement, Technical University, Košice, Slovakia
1; Associated Tissue Bank of University Hospital of L. Pasteur, Košice, Slovakia
2; Associated Tissue Bank, Faculty of Medicine, Pavol Jozef Šafárik University, Košice, Slovakia
3
Vyšlo v časopise:
Lékař a technika - Clinician and Technology No. 2, 2018, 48, 59-65
Kategorie:
Original research
Souhrn
Abstract
The purpose of this study was to investigate biocompatibility of the human mesenchymal stem cells (hMSCs) with bovine bone tissue at the cellular level in vitro. Phenotypic analysis of cells was made by flow cytometry. Cells were grown on the bone for 12 days. Metabolic activity of cells was assessed with the MTS assay. The growth data were used to calculate the population doubling times. The scanning electron microscopy was used to verify the attachment of cells on the bone surface. The results were analyzed by using ANOVA test. Immunophenotypic characteristics were positive for CD105, CD90, CD73, and negative for CD34, CD45. The growth curves of stem cells of the 1st and the 2nd passages for both media, with and without, bovine bone were constructed. The increase of approximately 60% of the doubling time for mesenchymal cells co-cultivated with bovine bone tissue was observed for both passages in comparison with the control. Our study confirmed that human mesenchymal stem cells are able to adhere to the bovine bone, even not being modified with bone-targeting elements. The proliferation rate and metabolic activity of cells co-cultivated with bone decrease in comparison with the control. Better survival was observed for cells of the 1st passage.
Keywords:
human mesenchymal stem cells, bovine bone tissue, biocompatibility, flow cytometry, MTS assay
Zdroje
- Hüsing, B., Bührlen, B., Gaisser, S.: Human Tissue Engineered Products – Today´s Markets and Future Prospects, Final Report for Work Package. Fraunhofer Institute for System and Innovation Research, Karlsruhe 2003.
- Castells-Sala, C., Alemany-Ribes, M., Fernández-Muiños, T., Recha-Sancho, L., López-Chicón, P., Aloy-Reverté, C., Caballero-Camino, J., Márquez-Gil, A., Semino, C. E.: Current applications of tissue engineering in biomedicine. J Biochips Tissue Chip 2013, vol. S2, 1–14.
- Filip, S., Mokrý, J., Hruška, I.: Kmeňové Bunky. Galén, Praha 2006.
- Azouna, N. B., Jenhani, F., Regaya, Z., Berraeis, L., Othman, T. B., Ducrocq, E., Domenech, J.: Phenotypical and functional characteristics of mesenchymal stem cells from bone marrow, comparison of culture using different media supplemented with human platelet lysate or fetal bovine serum. Stem Cell Res Ther 2012, vol. 3, 1–14.
- Orli, D., Kajstura, J., Chimenti, S., Jakoniuk, I., Anderson, S. M., Li, B., Pickel, J., McKay, R., Nadal-Ginard, B., Bodine, D. M., Leri, A., Anversa, P.: Bone marrow cells regenerate infarcted myocardium. Nature 2001, vol. 410, 701–705.
- Bosnakovski, D., Mizuno, M., Kim, G., Takagi, S., Okumura, M., Fujinaga, T.: Isolation and multilineage differentiation of bovine bone marrow mesenchymal stem cells. Cell Tissue Res 2005, vol. 319, 243–253.
- Bruder, S. P., Kurth, A. A., Shea, M., Hayes, W. C., Jaiswal, N., Kadiyala, S.: Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells. J Orthop Res 1998, vol. 16, 155–162.
- Liu, Y., Chen, F., Liu, W., Cui, L., Shang, Q., Xia, W., Wang, J., Cui, Y., Yang, G., Liu, D., Wu, J.: Repairing large porcine full-thickness defects of articular cartilage using autologous chondrocyte-engineered cartilage. Tissue Eng 2002, vol. 8, 709–721.
- Wakitani, S., Imoto, K., Yamamoto, T., Saito, M., Murata, N., Yoneda, M.: Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthr Cartilage 2002, vol. 10, 199–206.
- Natunen, S., Lampinen, M., Suila, H., Ritamo, I., Pitkänen, V., Nairn, A. V., Räbinä, J., Laitinen, S., Moremen, K. W., Reutter, W., Valmu, L.: Metabolic glycoengineering of mesenchymal stromal cells with N-propanoylmannosamine. Glycobiology 2013, vol. 23, 1004–1012.
- Maffulli, N., Renstrom, P., Leadbetter, W. B.: Tendon Injuries. Basic Science and Clinical Medicine. Springer, London 2005.
- Moll, G., Le Blanc, K.: Engineering more efficient multipotent mesenchymal stromal (stem) cells for systematic delivery as cellular therapy. ISBT Science Series 2015, vol. 10, 357–365.
- Wu, S. M., Chiu, H. C., Chin, Y. T., Lin, H. Y., Chiang, C. Y., Tu, H. P., Fu, M. M., Fu, E.: Effects of enamel matrix derivative on the proliferation and osteogenic differentiation of human gingival mesenchymal stem cells. Stem Cell Res Ther 2014, vol. 5, 1–11.
- Okabe, K., Yamada. Y., Ito, K., Kohgo, T., Yoshimi, R., Ueda, M.: Injectable soft-tissue augmentation by tissue engineering and regenerative medicine with human mesenchymal stromal cells, platelet-rich plasma and hyaluronic acid scaffolds. Cytotherapy 2009, vol. 11, 307–316.
- Knight, M. N., Hankenson, K. D.: Mesenchymal stem cells in bone regeneration. Adv Wound Care 2013, vol. 2, 306–316.
- Elman, J. S., Li, M., Wang, F., Gimble, J. M., Parekkadan, B.: A comparison of adipose and bone marrow-derived mesenchymal stromal cell secreted factors in the treatment of systemic inflammation. J Inflamm 2014, vol. 11, 1–8.
- Schneider, R. K., Anraths. J., Kramann, R., Bornemann, J., Bovi, M., Knüchel, R., Neuss, S.: The role of biomaterials in direction of mesenchymal stem cell properties and extracellular matrix remodelling in dermal tissue engineering. Biomaterials 2010, vol. 31, 7948–7959.
- Lawson, A. C., Czernuszka, J. T.: Collagen-calcium phosphate composites. Proc Instr Mech Eng 1998, vol. 212, 413–425.
- Rodrigues, C. V., Serricella, P., Linhares, A. B., Guerdes, R. M., Borojevic, R, Rossi, M. A., Duarte, M. E., Farina, M.: Characterization of a bovine collagen-hydroxyapatite composite scaffold for bone tissue engineering. Biomaterials 2003, vol. 24, 4987–4997.
- Donzelli, E., Salvadè, A., Mimo, P., Viganò, M., Morrone, M., Papagna, R., Carini, F., Zaopo, A., Miloso, M., Baldoni, M., Tredici, G.: Mesenchymal stem cells cultured on a collagen scaffold, In vitro osteogenic differentiation. Arch Oral Biol 2007, vol. 52, 64–73.
- Hutmacher, D. W.: Scaffolds in tissue engineering bone and cartilage. Biomaterials 2000, vol. 21, 2529–2543.
- Kiel-Jamrozik, M., Szewczenko, J, Basiaga, M., Nowińska, K.: Technological capabilities of surface layers formation on implant made of Ti-6Al-4V ELI alloy. Acta Bioeng Biomec. 2015, vol. 17, 31–37.
- Rumian, L., Reczyńska, K., Wrona, M., Tiainen, H., Haugen, H. J., Pamuła, E.: The influence of sintering conditions on microstructure and mechanical properties of titanium dioxide scaffolds for the treatment of bone tissue defects. Acta Bioeng Biomech 2015, vol. 17, 3–9.
- Migacz, K., Chłopek, J., Morawska-Chochół, A., Ambroziak, M.: Gradient composite materials for artificial intervertebral discs. Acta Bioeng Biomech 2014, vol. 16, 3–12.
- Mróz, A., Skalski, K., Walczyk, W.: New lumbar disc endoprosthesis applied to the patient’s anatomic features. Acta Bioeng Biomech 2015, vol. 17, 25–34.
- Bruder, S. P., Fox, B. S.: Tissue engineering of bone. Clin Orthop Rel Res 1999, vol. 367S, S68–S83.
- Rodríguez-Fuentes, N., Reynoso-Ducoing, O., Rodríguez-Hernández, A., Ambrosio-Hernández, J. R., Piña-Barba, M. C., Zepeda-Rodríguez, A., Cerbón-Cervantes, M. A., Tapia-Ramírez, J., Alcantara-Quintana, L. E.: Isolation of human mesenchymal stem cells and their cultivation on the porous bone matrix. J Vis Exp 2015, vol. 96, 1–7.
- Park, J. S., Suryaprakash, S., Lao, Y.-H., Leong, K. W.: Engineering mesenchymal stem cells for regenerative medicine and drug delivery. Methods 2015, vol. 84, 3–16.
- Sackstein, R., Merzaban, J. S., Cain, D. W., Dagia, N. M., Spencer, J. A., Lin, C. P., Wohlgemuth, R.: Ex vivo glycan engineering of CD44 programs human multipotent mesenchymal stromal cell trafficking to bone. Nat Med 2008, vol. 14, 181–187.
- D’Souza, S., Murata, H., Jose, M. V., Askarova, S., Yantsen, Y., Andersen, J. D., Edington, C. D., Clafshenkel, W. P., Koepsel, R. R., Russell, A. J.: Engineering of cell membranes with a bisphosphonate-containing polymer using ATRP synthesis for bone targeting. Biomaterials 2014, vol. 35, 9447–9458.
- Guan, M., Yao, W., Liu, R., Lam, K. S., Nolta, J., Jia, J., Panganiban, B., Meng, L., Zhou, P., Shahnazari, M., Ritchie, R. O.: Directing mesenchymal stem cells to bone to augment bone formation and increase bone mass. Nat Med 2012, vol. 18, 456–462.
- Yao, W., Lane, N. E.: Targeted delivery of mesenchymal stem cells to the bone. Bone 2015, vol. 70, 62–65.
Štítky
BiomedicínaČlánek vyšel v časopise
Lékař a technika
2018 Číslo 2
Nejčtenější v tomto čísle
- Response by an automated inspired oxygen control system to hypoxemic episodes: assessment of damping
- Application of sibgle wireless holter to simultaneous EMG, MMG and eim measurement of human muscles activity
- Workflow for bioprinting of cell-ladem bioink
- Machine learning using speech utterances for parkinson disease detection