Sérové koncentrace meropenemu u pacientů vyžadujících intenzivní péči: retrospektivní analýza
Autoři:
Jana Uricová; Ivana Kacířová; Hana Brozmanová
Působiště autorů:
Department of Clinical Pharmacology, Faculty of Medicine, University of Ostrava, Czech Republic
Vyšlo v časopise:
Čes. slov. Farm., 2020; 69, 230-236
Kategorie:
Původní článek
Souhrn
Úvod: Cílem retrospektivní analýzy bylo posoudit, zda stávající dávkovací režimy meropenemu vedou k adekvátní expozici meropenemu.
Metody: Do práce byly zahrnuty pouze údolní kon-centrace při prvním měření. Ke zhodnocení dosažení farmakokineticko/farmakodynamického (PK/PD) cíle byly použity MIC patogenů definovaných v European Committee on Antimicrobial Susceptibility testing.
Výsledky: Do studie bylo zahrnuto 83 pacientů. Byla pozorována velká variabilita sérových hladin mero-penemu (medián 34,3 mg/l, rozptyl < 1,0–146,1 mg/l). Nejnižší PK/PD cíl pro citlivé patogeny (100 % T > MIC) byl dosažen u 100 % pacientů na dialýze a kontinuální eliminační metodě (CRRT) a u 91 % pacientů bez eliminační metody. Pro patogeny s intermediární citlivostí 100 % T > MIC bylo dosaženo u všech pacientů na CRRT a 96 % pacientů na dialýze, jen 74 % pacientů bez eliminační metody dosáhlo tento PK/PD cíl. Pacienti na RRT měli vyšší pravděpodobnost dosažení nejvyššího PK/PD cíle 100 % T > 5 × MIC, P < 0,05. Vyšší podíl pacientů na RRT by vyžadoval snížení dávky meropenemu, pokud by byl zvolen horní limit 100 % T > 10 × MIC, P < 0,05.
Závěr: Aplikace standardní dávky meropenemu kriticky nemocným pacientům vede k velké variabilitě hladin. Nastavení dávky pro konkrétního pacienta je důležité pro dosažení adekvátní expozice meropenemu.
Klíčová slova:
meropenem – údolní koncentrace – MIC – farmakokineticko/farmakodynamický cíl
Zdroje
1. Vincent J. L., Rello J., Marshall J., Silva E., Anzueto A., Martin C. D., Moreno R., Lipman J., Gomersall C., Sakr Y., Reinhart K. International study of the prevalence and outcomes of infection in intensitve care units. JAMA 2009; 302, 2323–2329.
2. Kula R., Sklienka P., Chýlek V., Sturz P. Současné trendy antibiotické terapie v léčbě těžké sepse. Klin. Farmakol. Farm. 2007; 21, 74–78.
3. Burgess D. S. Pharmacodynamic principles of antimicrobial therapy in the prevention of resistance. Chest 1999; 115, 19S–23S.
4. Roberts J. A., Kruger P., Paterson D. L., Lipman J. Antibiotic resistance – what’s dosing got to do with it? Crit. Care Med. 2008; 36, 2433–2440.
5. Roberts J. A., Abdul-Aziz M. H., Lipman J., Mouton J. W., Vinks A. A., Felton T. W., Hope W. W., Farkas A., Neely M. N., Schentag J. J., Drusano G., Frey O. R., Theuretzbacher U., Kuti J. L. Individualised antibiotic dosing for patients who are critically ill: challenges and potential solutions. Lancet Infect. Dis. 2014; 14, 498–509.
6. Blot S. I., Pea F., Lipman J. The effect of pathophysiology on pharmacokinetics in the critically ill patient — Concepts appraised by the example of antimicrobial agents. Adv. Drug Deliv. Rev. 2014; 77, 3–11.
7. Evans L. E., Alhazzani W., Levy M. M., Antonelli M., Ferrer R., Kumar A., Sevransky J. E., Sprung C. L., Nunnally M. E., Rochwerg B., Rubenfeld G. D., Angus D. C., Annane D., Beale R. J., Bellinghan G. J., Bernard G. R., Chiche J. D., Coopersmith C., de Backer D. P., French C. J., Fujishima S., Gerlach H., Hidalgo J. L., Hollenberg S. M., Jones A. E., Karnad D. R., Kleinpell R. M., Koh Y., Lisboa T. C., Machado F. R., Marini J. J., Marshall J. C., Mazuski J. E., McIntyre L. A., McLean A. S., Mehta S., Moreno R. P., Myburgh J., Navalesi P., Nishida O., Osborn T. M., Perner A., Plunkett C. M., Ranieri M., Schorr C. A., Seckel M. A., Seymour C. W., Shieh L., Shukri K. A., Simpson S. Q., Singer M., Thompson B. T., Townsend S. R., van der Poll T., Vincent J. L., Wiersinga W. J., Zimmerman J. L., Dellinger R. P. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017; 43, 304–377.
8. McKinnon P. S., Paladino J. A., Schentag J. J. Evaluation of area under the inhibitory curve (AUIC) and time above the minimum inhibitory concentration (T>MIC) as predictors of outcome for cefepime and ceftazidime in serious bacterial infections. Int. J. Antimicrob. Agents 2008; 31, 345–351.
9. Mouton J. W., Vinks A. A. Is continuous infusion of beta-lactam antibiotics worth while? Efficacy and pharmacokinetic considerations. J. Antimicrob. Chemother. 1996; 38, 5–15.
10. Sinnollareddy M. G., Roberts M. S., Lipman J., Roberts J. A. β-lactam pharmacokinetics and pharmacodynamics in critically ill patiens and strategies for dose optimization: A structured review. Clin. Exp. Pharmacol. Physiol. 2012; 39, 489–496.
11. Roberts J. A., Ulldemolins M., Roberts M. S., McWhinney B., Ungerer J., Paterson D. L., Lipman J. Therapeutic drug monitoring of β-lactams in critically ill patients: proof of concept. Int. J. Antimicrob. Agents 2010; 36, 332–339.
12. Li Ch., Du X., Kuti J. L., Nicolau D. P. Clinical pharmacodynamics of meropenem in patients with lower respiratory tract infections. Antimicrob. Agents Chemother. 2007; 51, 1725–1730.
13. The European Committee on Antimicrobial Susceptibility Testing https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_10.0_Breakpoint_Tables.pdf
14. Heffernan A. J., Sime F. B., Lipman J., Dhanani J., Andrews K., Ellwood D., Grimwood K., Roberts J. A. Intrapulmonary pharmacokinetics of antibiotics used to treat nosocomial pneumonia caused by Gram-negative bacilli: A systematic review. Int. J. Antimicrob. Agents 2019; 53, 234–245.
15. Lonsdale D. O., Udy A. A., Roberts J. A., Lipman J. Antibacterial therapeutic drug monitoring in cerebrospinal fluid: difficulty in achieving adequate drug concentrations. J. Neurosurg. 2013; 118, 297–301.
16. Sumi C. D., Heffernan A. J., Lipman J., Roberts J. A., Sime F. B. What Antibiotic Exposures Are Required to Suppress the Emergence of Resistance for Gram-Negative Bacteria? A Systematic Review. Clin. Pharmacokinet. 2019; 58: 1407–1443.
17. Baldwin C. M., Lyseng-Williamson K. A., Keam S. J. Meropenem: a review of its use in the treatment of serious bacterial infections. Drugs 2008; 68, 803–838.
18. Christensson B. A., Nilsson-Ehle I., Hutchison M., Haworth S. J., Oqvist B., Norrby S. R. Pharmacokinetics of meropenem in subjects with various degrees of renal impairment. Antimicrob. Agents. Chemother. 1992; 36, 1532–1537.
19. Mattioli F., Fucile C., del Bono V., Marini V., Parisini A., Molin A., Zuccoli M. L., Milano G., Danesi R., Marchese A., Polillo M., Viscoli C., Pelosi P., Martelli A., di Paolo A. Population pharmacokinetics and probability of target attainment of meropenem in critically ill patients. Eur. J. Clin. Pharmacol. 2016; 72, 839–848.
20. Ehmann L., Zoller M., Minichmayr I. K., Scharf C., Maier B., Schmitt M. V., Hartung N., Huisinga W., Vogeser M., Frey L., Zander J., Kloft C. Role of renal function in risk assessment of target non-attainment after standard dosing of meropenem in critically ill patients: a prospective observational study. Crit. Care 2017; 21, 263.
21. Wong G., Briscoe S., McWhinney B., Ally M., Ungerer J., Lipman J., Roberts J. A. Therapeutic drug monitoring of β-lactam antibiotics in the critically ill: direct measurement of unbound drug concentrations to achieve appropriate drug exposures. J. Antimicrob. Chemother. 2018; 73, 3087–3094.
22. Taccone F. S., Laterre P. F., Dugernier T., Spapen H., Delattre I., Wittebole X., de Backer D., Layeux B., Wallemacq P., Vincent J. L., Jacobs F. Insufficient β-lactam concentrations in the early phase of severe sepsis and septic shock. Crit. Care 2010; 14, R126.
23. Gonçalves-Pereira J., Póvoa P. Antibiotics in critically ill patients: a systematic review of the pharmacokinetics of β-lactams. Crit. Care 2011; 15, R206.
24. Sime F. B., Roberts M. S., Peake S. L., Lipman J., Roberts J. A. Does Beta-lactam Pharmacokinetic Variability in Critically Ill Patients Justify Therapeutic Drug Monitoring? A Systematic Review. Ann. Intensive Care 2012; 2, 35.
25. Roberts J. A., Paul S. K., Akova M., Bassetti M., de Waele J. J., Dimopoulos G., Kaukonen K. M., Koulenti D., Martin C., Montravers P., Rello J., Rhodes A., Starr T., Wallis S. C., Lipman J. DALI: defining antibiotic levels in intensive care unit patients: are current β-lactam antibiotic doses sufficient for critically ill patients? Clin. Infect. Dis. 2014; 58, 1072–1083.
26. Guilhaumou R., Benaboud S., Bennis Y., Dahyot-Fizelier C., Dailly E., Gandia P., Goutelle S., Lefeuvre S., Mongardon N., Roger C., Scala-Bertola J., Lemaitre F., Garnier M. Optimization of the treatment with beta-lactam antibiotics in critically ill patients-guidelines from the French Society of Pharmacology and Therapeutics (Société Française de Pharmacologie et Thérapeutique-SFPT) and the French Society of Anaesthesia and Intensive Care Medicine (Société Française d’Anesthésie et Réanimation-SFAR). Crit. Care 2019; 23, 104.
27. Roberts J. A., Joynt G. M., Choi G. Y., Gomersall C. D., Lipman J. How to optimise antimicrobial prescriptions in the Intensive Care Unit: principles of individualised dosing using pharmacokinetics and pharmacodynamics. Int. J. Antimicrob. Agents 2012; 39, 187–192.
28. Udy A. A., Varghese J. M., Altukroni M., Briscoe S., McWhinney B. C., Ungerer J. P., Lipman J., Roberts J. A. Subtherapeutic initial β-lactam concentrations in select critically ill patients: association between augmented renal clearance and low trough drug concentrations. Chest 2012; 142, 30–39.
29. Hayashi Y., Lipman J., Udy A. A., Ng M., McWhinney B., Ungerer J., Lust K., Roberts J. A. β-Lactam therapeutic drug monitoring in the critically ill: optimising drug exposure in patients with fluctuating renal function and hypoalbuminaemia. Int. J. Antimicrob. Agents 2013; 41, 162–166.
30. Sadilová Z., Halačová M., Černý D. Pharmacokinetic aspects of beta-lactam antibiotic therapy in intensive care unit patients: A one-center experience with TDM. Čes. slov. Farm. 2020; 69, 17–23.
31. Ulldemolins M., Vaquer S., Llauradó-Serra M., Pontes C., Calvo G., Soy D., Martín-Loeches I. Beta-lactam dosing in critically ill patients with septic shock and continuous renal replacement therapy. Crit. Care 2014; 18, 227.
32. Hahn J., Choi J. H., Chang M. J. Pharmacokinetic changes of antibiotic, antiviral, antituberculosis and antifungal agents during extracorporeal membrane oxygenation in critically ill adult patiens. J. Clin. Pharm. Ther. 2017; 42, 661–671.
33. Müller M., de la Peña A., Derendorf H. Issues in pharmacokinetics and pharmacodynamics of anti-infective agents: distribution in tissue. Antimicrob. Agents Chemother. 2004; 48, 1441–1453.
34. Roberts J. A., Kirkpatrick C. M., Roberts M. S., Robertson T. A., Dalley A. J., Lipman J. Meropenem dosing in critically ill patients with sepsis and without renal dysfunction: intermittent bolus versus continuous administration? Monte Carlo dosing simulations and subcutaneous tissue distribution. J. Antimicrob. Chemother. 2009; 64, 142–150.
35. Abdul-Aziz M. H., Lipman J., Akova M., Bassetti M., de Waele J. J., Dimopoulos G., Dulhunty J., Kaukonen K. M., Koulenti D., Martin C., Montravers P., Rello J., Rhodes A., Starr T., Wallis S. C., Roberts J. A. Is prolonged infusion of piperacillin/tazobactam and meropenem in critically ill patients associated with improved pharmacokinetic/ pharmacodynamic and patient outcomes? An observation from the Defining Antibiotic Levels in Intensive care unit patients (DALI) cohort. J. Antimicrob. Chemother. 2016; 71, 196–207.
36. Lorente L., Lorenzo L., Martín M. M., Jiménez A., Mora M. L. Meropenem by continuous versus intermittent infusion in ventilator-associated pneumonia due to gram-negative bacilli. Ann. Pharmacother. 2006; 40, 219–223.
37. Roberts J. A., Abdul-Aziz M. H., Davis J. S., Dulhunty J. M., Cotta M. O., Myburgh J., Bellomo R., Lipman J. Continuous versus Intermittent b-Lactam Infusion in Severe Sepsis. A Meta-analysis of Individual Patient Data from Randomized Trials. Am. J. Respir. Crit. Care Med. 2016; 194, 681–691.
38. Vardakas K. Z., Voulgaris G. L., Maliaros A., Samonis G., Falagas M. E. Prolonged versus short-term intravenous infusion of antipseudomonal β-lactams for patients with sepsis: a systematic review and meta-analysis of randomised trials. Lancet Infect. Dis. 2018; 18, 108–120.
39. Imani S., Buscher H., Marriott D., Gentili S., Sandaradura I. Too much of a good thing: a retrospective study of β-lactam concentration-toxicity relationships. J. Antimicrob. Chemother. 2017; 72, 2891–2897.
40. Quinton M. C., Bodeau S., Kontar L., Zerbib Y., Maizel J., Slama M., Masmoudi K., Lemaire-Hurtel A. S., Bennis Y. Neurotoxic Concentration of Piperacillin during Continuous Infusion in Critically Ill Patients. Antimicrob. Agents Chemother. 2017; 61 e00654–17.
Štítky
Farmacie FarmakologieČlánek vyšel v časopise
Česká a slovenská farmacie
2020 Číslo 5-6
- Distribuce a lokalizace speciálně upravených exosomů může zefektivnit léčbu svalových dystrofií
- O krok blíže k pochopení efektu placeba při léčbě bolesti
- FDA varuje před selfmonitoringem cukru pomocí chytrých hodinek. Jak je to v Česku?
Nejčtenější v tomto čísle
- Sérové koncentrace meropenemu u pacientů vyžadujících intenzivní péči: retrospektivní analýza
- K životnímu jubileu prof. RNDr. Jozefa Csölleiho, CSc.
- Vývoj a validace metody HPLC pro kvantifikaci nečistot degradace salbutamol-sulfátu s následujícími dlouhodobými stabilitními testy ve vícesložkovém sirupu proti kašli
- Automatizovaná příprava radiofarmak jako nástroj optimalizace radiační ochrany personálu