Chronic obstructive pulmonary disease: diagnosis and treatment of stable phase of disease; personalized treatment approach using phenotype features of the disease Summary of the 2020–2021 Czech Pneumological and Phthiseological Society position paper
Authors:
doc. MUDr. Kristián Brat, Ph.D. 1,2; Jaromír Zatloukal 3,4; Kateřina Neumannová 5; Eva Voláková 3,4; Ondřej Kudela 6,7; Michal Kopecký 6,7; Marek Plutinský 1,2; Vladimír Koblížek 6,7
Authors‘ workplace:
Klinika nemocí plicních a tuberkulózy, Fakultní nemocnice Brno
1; Lékařská fakulta Masarykovy Univerzity, Brno
2; Klinika plicních nemocí a tuberkulózy, Fakultní nemocnice Olomouc
3; Lékařská fakulta Univerzity Palackého, Olomouc
4; Katedra fyzioterapie, Fakulta tělesné kultury, Univerzita Palackého, Olomouc
5; Plicní klinika, Fakultní nemocnice Hradec Králové
6; Lékařská fakulta v Hradci Králové, Univerzita Karlova
7
Published in:
Vnitř Lék 2021; 67(4): 230-239
Category:
Review Articles
Overview
Chronic obstructive pulmonary disease (COPD) is a heterogenous condition affecting hundreds of millions of people worldwide. COPD is a major health problem associated with significant morbidity and mortality. In this review, the authors present the current concept of care for patients with COPD in the Czech Republic, along with a summary of treatment recommendations formulated by the expert group of the Czech Pneumological and Phthisiological Society. A more detailed version of the position paper was published in 2020. The aim of this work was to transform the most recent scientific knowledge into the context of daily practice in the Czech Republic. Our concept of care for patients with COPD uses a complex approach with special emphasis on individual phenotypic features of the disease. Maximal effort has been put into individualization of treatment according to the presence of certain clinical phenotypes/treatable traits with respect to current scientific knowledge.
Keywords:
COPD – position paper – clinical phenotypes – treatable traits – individualized treatment – personalized medicine
Sources
1. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease. 2021 Report. [Naposledy navštíveno: 7.4.2021]. Dostupné z: https://goldcopd.org/wp-content/uploads/2020/11/GOLD-REPORT-2021-v1. 1-25Nov20_WMV.pdf
2. Miravitlles M, Vogelmeier C, Roche N et al. A review of national guidelines for management of COPD in Europe. Eur Respir J. 2016; 47(2): 625–637.
3. Miravitlles M, Soler-Cataluña JJ, Calle M et al. Spanish Guidelines for Management of Chronic Obstructive Pulmonary Disease (GesEPOC) 2017. Pharmacological Treatment of Stable Phase. Arch Bronconeumol. 2017; 53(6): 324–335.
4. Koblizek V, Chlumsky J, Zindr V et al. Czech Pneumological and Phthisiological Society. Chronic Obstructive Pulmonary Disease: official diagnosis and treatment guidelines of the Czech Pneumological and Phthisiological Society; a novel phenotypic approach to COPD with patient-oriented care. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2013; 157(2): 189–201.
5. Zatloukal J, Brat K, Neumannova K et al. Chronic obstructive pulmonary disease – diagnosis and management of stable disease; a personalized approach to care, using the treatable traits concept based on clinical phenotypes. Position paper of the Czech Pneumological and Phthisiological Society. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2020; 164(4): 325–356.
6. Martin RJ, Bel EH, Pavord ID et al. Defining severe obstructive lung disease in the biologic era: an endotype-based approach. Eur Respir J. 2019; 54: 1900108.
7. Barnes PJ. Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2016; 138(1): 16–27.
8. Tashkin DP, Wechsler ME. Role of eosinophils in airway inflammation of chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2018; 13: 335–349.
9. Singh D, Kolsum U, Brightling CE et al. ECLIPSE investigators. Eosinophilic inflammation in COPD: prevalence and clinical characteristics. Eur Respir J. 2014; 44(6): 1697–700.
10. Polosukhin VV, Richmond BW, Du RH et al. Secretory IgA Deficiency in Individual Small Airways Is Associated with Persistent Inflammation and Remodeling. Am J Respir Crit Care Med. 2017; 195(8): 1010–1021.
11. McDonough JE, Yuan R, Suzuki M et al. Small-airway obstruction and emphysema in chronic obstructive pulmonary disease. N Engl J Med. 2011; 365(17): 1567–1575.
12. Elbehairy AF, Ciavaglia CE, Webb KA et al. Canadian Respiratory Research Network. Pulmonary Gas Exchange Abnormalities in Mild Chronic Obstructive Pulmonary Disease. Implications for Dyspnea and Exercise Intolerance. Am J Respir Crit Care Med. 2015; 191(12): 1384–1394.
13. Garcia-Rio F, Miravitlles M, Soriano JB et al. EPI-SCAN Steering Committee. Systemic inflammation in chronic obstructive pulmonary disease: a population-based study. Respir Res. 2010; 11: 63.
14. King PT. Inflammation in chronic obstructive pulmonary disease and its role in cardiovascular disease and lung cancer. Clin Transl Med. 2015; 4(1): 68.
15. Kim HC, Mofarrahi M, Hussain SN. Skeletal muscle dysfunction in patients with chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2008; 3(4): 637–658.
16. Chen YW, Ramsook AH, Coxson HO et al. Prevalence and Risk Factors for Osteoporosis in Individuals With COPD: A Systematic Review and Meta-analysis. Chest. 2019; 156(6): 1092–1110.
17. Lu Y, Feng L, Feng L et al. Systemic inflammation, depression and obstructive pulmonary function: a population-based study. Respir Res. 2013; 14: 53.
18. Hersh CP, Make BJ, Lynch DA et al.; COPDGene and ECLIPSE Investigators. Non-emphysematous chronic obstructive pulmonary disease is associated with diabetes mellitus. BMC Pulm Med. 2014; 14: 164.
19. Agusti A, Bel E, Thomas M et al. Treatable traits: toward precision medicine of chronic airway diseases. Eur Respir J. 2016; 47(2): 410–419.
20. Franssen FM, Alter P, Bar N et al. Personalized medicine for patients with COPD: where are we? Int J Chron Obstruct Pulmon Dis. 2019; 14: 1465–1484.
21. Bigna JJ, Kenne AM, Asangbeh SL et al. Prevalence of chronic obstructive pulmonary disease in the global population with HIV: a systematic review and meta-analysis. Lancet Glob Health. 2018; 6(2): e193–e202.
22. Bui DS, Burgess JA, Lowe AJ et al. Childhood Lung Function Predicts Adult Chronic Obstructive Pulmonary Disease and Asthma-Chronic Obstructive Pulmonary Disease Overlap Syndrome. Am J Respir Crit Care Med. 2017; 196(1): 39–46.
23. Broström EB, Akre O, Katz-Salamon M et al. Obstructive pulmonary disease in old age among individuals born preterm. Eur J Epidemiol. 2013; 28(1): 79–85.
24. Byrne AL, Marais BJ, Mitnick CD et al. Tuberculosis and chronic respiratory disease: a systematic review. Int J Infect Dis. 2015; 32: 138–146.
25. Hayden LP, Hobbs BD, Cohen RT et al.; COPDGene Investigators. Childhood pneumonia increases risk for chronic obstructive pulmonary disease: the COPDGene study. Respir Res. 2015; 16: 115.
26. Greulich T, Nell C, Hohmann D et al. The prevalence of diagnosed α1-antitrypsin deficiency and its comorbidities: results from a large population-based database. Eur Respir J. 2017; 49(1): 1600154.
27. Guo F, Kuang JL. Superoxide dismutase gene polymorphisms and functional activity in chronic obstructive pulmonary disease. Zhonghua Jie He He Hu Xi Za Zhi. 2011; 34(6): 424–428.
28. Houghton AM. Matrix metalloproteinases in destructive lung disease. Matrix Biol. 2015; 44–46: 167–174.
29. Ding Z, Wang K, Li J et al. Association between glutathione S-transferase gene M1 and T1 polymorphisms and chronic obstructive pulmonary disease risk: A meta-analysis. Clin Genet. 2019; 95(1): 53–62.
30. Miravitlles M, Dirksen A, Ferrarotti I et al. European Respiratory Society statement: diagnosis and treatment of pulmonary disease in α(1)-antitrypsin deficiency. Eur Respir J. 2017; 50(5): 1700610.
31. Burgel PR, Laurendeau C, Raherison C et al. An attempt at modeling COPD epidemiological trends in France. Respir Res. 2018; 19(1): 130.
32. Adeloye D, Chua S, Lee C et al.; Global Health Epidemiology Reference Group (GHERG). Global and regional estimates of COPD prevalence: Systematic review and meta-analysis. J Glob Health. 2015; 5(2): 020415.
33. Koblizek V, Jarkovsky J, Dusek L, Benesova K, Svoboda M, Brat K. The Czechia COPD mortality rate declining, but total deaths increasing. Eur Respir J 2020; 56(suppl 64): 434.
34. Vondra V, Malý M. Výrazný vzestup úmrtnosti na chronickou obstrukční plicní nemoc v České republice v letech 2013-2017. Studia Pneumol Phthiseol. 2019; 79(2): 43–50.
35. Celli BR, Cote CG, Marin JM et al. The body-mass index, airflow obstruction, dyspnea, and exercise capacity index in chronic obstructive pulmonary disease. N Engl J Med. 2004; 350(10): 1005–1012.
36. Puhan MA, Garcia-Aymerich J, Frey M et al. Expansion of the prognostic assessment of patients with chronic obstructive pulmonary disease: the updated BODE index and the ADO index. Lancet. 2009; 374(9691): 704–711.
37. Brat K, Svoboda M, Hejduk K et al..Introducing a new prognostic instrument for long- -term mortality prediction in COPD patients: the CADOT index. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2020; in press. doi: 10.5507/bp.2020.035.
38. Qaseem A, Wilt TJ, Weinberger SE et al. Diagnosis and management of stable chronic obstructive pulmonary disease: a clinical practice guideline update for the ACP, ACCP, ATS and ERS. Ann Intern Med. 2011; 155(3): 179–191.
39. Pellegrino R, Viegi G, Brusasco V et al. Interpretative strategies for lung function tests. Eur Respir J. 2005; 26(5): 948–968.
40. Brat K, Plutinsky M, Hejduk K et al. Respiratory parameters predict poor outcome in COPD patients, category GOLD 2017 B. Int J Chron Obstruct Pulmon Dis. 2018; 13: 1037–1052.
41. Agusti A. The path to personalised medicine in COPD. Thorax. 2014; 69(9): 857–864.
42. Le Rouzic O, Roche N, Cortot AB et al. Defining the „Frequent Exacerbator“ Phenotype in COPD: A Hypothesis-Free Approach. Chest. 2018; 153(5): 1106–1115.
43. Chalmers JD, Aliberti S, Filonenko A et al. Characterization of the „Frequent Exacerbator Phenotype“ in Bronchiectasis. Am J Respir Crit Care Med. 2018; 197(11): 1410–1420.
44. Koblizek V, Milenkovic B, Barczyk A et al. Phenotypes of COPD patients with a smoking history in Central and Eastern Europe: the POPE Study. Eur Respir J. 2017; 49(5): 1601446.
45. Kim V, Han MK, Vance GB et al.; COPDGene Investigators. The chronic bronchitic phenotype of COPD: an analysis of the COPDGene Study. Chest. 2011; 140(3): 626–633.
46. Cheng Y, Tu X, Pan L et al. Clinical characteristics of chronic bronchitic, emphysematous and ACOS phenotypes in COPD patients with frequent exacerbations. Int J Chron Obstruct Pulmon Dis. 2017; 12: 2069–2074.
47. Tho NV, Park HY, Nakano Y. Asthma-COPD overlap syndrome (ACOS): A diagnostic challenge. Respirology. 2016; 21(3): 410–418.
48. Takiguchi H, Asano K. Asthma-COPD overlap syndrome (ACOS). Nihon Rinsho. 2016; 74(5): 778–782.
49. Martinez-Garcia MA, Miravitlles M. Bronchiectasis in COPD patients: more than a comorbidity? Int J Chron Obstruct Pulmon Dis. 2017; 12: 1401–1411.
50. Polverino E, Dimakou K, Hurst J, et al. The overlap between bronchiectasis and chronic airway diseases: state of the art and future directions. Eur Respir J. 2018; 52(3): 1800328.
51. Yu Q, Peng H, Li B et al. Characteristics and related factors of bronchiectasis in chronic obstructive pulmonary disease. Medicine (Baltimore). 2019; 98(47): e17893.
52. Sánchez-Muñoz G, Lopez-de-Andrés A, Hernández-Barrera V et al. Bronchiectasis in patients hospitalized with acute exacerbation of COPD in Spain: Influence of mortality, hospital stay, and hospital costs (2006-2014) according to gender. PLoS One. 2019; 14(1): e0211222.
53. McDonald MN, Wouters EFM, Rutten E et al. It’s more than low BMI: prevalence of cachexia and associated mortality in COPD. Respir Res. 2019; 20(1): 100.
54. Kwan HY, Maddocks M, Nolan CM et al. The prognostic signifikance of wieght loss in chronic obstructive pulmonary disease – related cachexia: a prospective cohort study. J Cachexia Sarcopenia Muscle. 2019; 10(6): 1330–1338.
55. Mokari-Yamchi A, Jabbari M, Sharifi A et al. Low FEV1 Is Associated With Increased Risk Of Cachexia In COPD Patients. Int J Chron Obstruct Pulmon Dis. 2019; 14: 2433–2440.
56. Sanchez FF, Faganello MM, Tanni SE et al. Anthropometric midarm measurements can detect systemic fat-free mass depletion in patients with chronic obstructive pulmonary disease. Braz J Med Biol Res. 2011; 44(5): 453–459.
57. Brat K, Svoboda M, Zatloukal J, Plutinsky M, Volakova E, Popelkova P, Novotna B, Dvorak T, Koblizek V. The relation between clinical phenotypes, GOLD groups/stages and mortality in COPD patients - a prospective multicenter study. Int J Chron Obstruct Pulmon Dis. 2021; in press.
58. Ajmera M, Sambamoorthi U, Metzger A et al. Multimorbidity and COPD Medication Receipt Among Medicaid Beneficiaries With Newly Diagnosed COPD. Respir Care. 2015; 60(11): 1592–1602.
59. Jantunen J, Haahtela T, Salimäki J et al. Multimorbidity in Asthma, Allergic Conditions and COPD Increase Disease Severity, Drug Use and Costs: The Finnish Pharmacy Survey. Int Arch Allergy Immunol. 2019; 179(4): 273–280.
60. Spyratos D, Haidich AB, Chloros D et al. COPD screening program: What is appropriate target group population? Respiration. 2017; 94(1): 74.
61. Ulrik CS, Løkke A, Dahl R et al., TOP study group. Early detection of COPD in general practice. Int J Chron Obstruct Pulmon Dis. 2011; 6: 123–127.
62. Jiménez-Ruiz CA, Andreas S, Lewis KE et al. Statement on smoking cessation in COPD and other pulmonary diseases and in smokers with comorbidities who find it difficult to quit. Eur Respir J. 2015; 46(1): 61–79. Další literatura u autora a na www.casopisvnitrnilekarstvi.cz
Labels
Diabetology Endocrinology Internal medicineArticle was published in
Internal Medicine
2021 Issue 4
Most read in this issue
- Chronic obstructive pulmonary disease: diagnosis and treatment of stable phase of disease; personalized treatment approach using phenotype features of the disease Summary of the 2020–2021 Czech Pneumological and Phthiseological Society position paper
- Thymoma – disease of many faces
- Targeted and biological drugs in the treatment of inflammatory rheumatic diseases
- Biologic therapy for dyslipidemia